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Executive Summary 

The objective of this deliverable is to present the pilot activities of Task 4.2, namely 
Improved Food Security and Water Extremes Management, and report on its outcomes. 
The GEO-CRADLE network encompasses the Balkans, the Middle East, and North Africa 
(including Cyprus and Turkey). This task involved the knowledge transfer actions of Earth 
Observation tools and practices from countries in the region that are more advanced 
and mature in the utilization of Earth Observation (EO) data towards countries that are 
lacking behind. This document entails a description of tools and practices which were 
used and have been distributed to all partners, having as an end goal their uptake and 
future utilization. 

Having reflected upon the outputs of Work Packages (WP) 2 and 3, namely the existing 
gaps, needs, relevant EO capacities and existing maturity in the region of interest (RoI), 
a refined scope and objective was agreed upon and was presented in D4.2. This scope 
encompassed the steps which ought to have been taken in order to ensure a concrete 
and established uptake of EO services by the partners, with respect to the improvement 
of food security and water extremes management. The state-of-the-art technologies 
disseminated entail: a) on the hand the development of a regional Soil Spectral Library 
(SSL), granted as noted in WP 2 and 3 that the region was severely under-represented 
in other contemporary SSLs, which is necessary for the transformation of EO data to 
end-user data; and b) on the other hand the combined use of EO data and EO-derived 
maps with other sources (such as e.g. meteorological and topographical data) in an 
integrated web-GIS platform for monitoring of natural risks, projecting potential of risk 
in the future (forecasting), and evaluating the effect of prevention measures. 

As far as the establishment of the regional SSL is concerned, a concentrated effort was 
realized to collect soil samples from the whole region. The effort was met largely with a 
success, and a total of 1754 distinct soil samples (records) comprise the regional SSL, 
which is made available through the regional datahub. It must be underscored that 
particular care was taken to ensure that the library conforms and adheres to other 
spectral libraries, assuring its future extension and compliance with other contemporary 
libraries. In other words, the library is expandable and can be used in conjunction with 
other similar libraries conforming to the same specifications. With regards to the spatial 
coverage, 1327 soil samples are from the Balkans, while 427 are from the Middle East 
and North Africa (including Cyprus and Turkey), with North Africa being the least 
represented region. To ultimately derive to this SSL, the methodology and techniques 
used to a) perform soil sampling (i.e. collect the soil samples), b) prepare the samples 
and chemically analyze them, c) perform the spectral measurements in a standardized, 
uniform, and error-free way, d) develop spectral models using machine learning 
algorithms, and finally e) applying the models to Copernicus EO data, were all 
disseminated to all project partners. This was achieved through a series of lectures, 
meetings, webinars, hands-on demonstrations, training days, and dissemination of 
software. These were all put to the test and culminated through their real-world 
application, i.e. the establishment of the regional SSL and production of EO-related 
products utilizing the SSL. 
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With respect to the management of water extremes, a web-GIS (Geo-Information 
System) platform was developed which enables the integration of static and dynamic 
geo-spatial data (including data derived from Earth Observation sources) as well as 
models for forecasting. This platform (named myDEWETRA) was populated with 
significant data for the RoI including past weather and climatic data, and forecast results 
of models assessing the floods and droughts risk. Moreover, products derived from 
Earth Observation techniques were integrated. Besides the general data of the region, 
a more concrete example was considered with more thorough data and results. A case 
study was considered, encompassing the Drin river basin in Northern Albania. A 
hydrological model was subsequently implemented in the region, whereby a 
comparison was made between modelled soil moisture and satellite soil moisture. The 
use of clay content maps from satellite data was investigated for the evaluation of the 
hydrogical model’s parameters. In addition, two soil maps generated from satellites of 
the Copernicus mission with the help of the regional SSL were furthermore integrated 
into the myDEWETRA platform and into the hydrological model of the region, 
showcasing how the outcomes of this pilot activity may be exploited in the future by 
other researchers. 

The current pilot aims to improve the capacity building through a detailed program to 
strengthen EO project partners (and beyond) knowledge and capabilities. Moreover, the 
pilot outcomes are relevant to improve decisions of policy makers, concerning 
agricultural and natural processes in general. It has a strong potential to help EU 
agricultural policy meeting their objectives, concerning enhanced competitiveness of 
the agricultural sector and improved sustainability and effectiveness through reduced 
environmental impacts and utilization of natural resources in more sustainable and high 
efficient manners. 
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1. Introduction 

1.1. Regional importance 

During the first months of GEO-CRADLE’s implementation, an inventory of regional 
capacities and an end-user need analysis was conducted (WP2). This was achieved 
through a series of interviews carried out with end-user organizations, as well as by 
utilizing the existing knowledge base of the partners themselves. These two invaluable 
sources of information were subsequently analyzed and a number of priorities in 
relation to the regional challenges were identified (WP3, D3.3). This is complemented 
by a common support actions entailing a) the awareness raising of the value of the EO 
operational services, in order to promote the use of EO data by more actors, b) the 
improvement of human capacity to develop value-added services and support decision-
driven management systems, by disseminating knowledge of how EO data can be 
exploited, c) the development of a regional data hub operating on the principles of free 
and open data, allowing unhindered and unconstrained access to EO data for everyone, 
d) and the establishment of a regional coordination mechanism. 

With respect to the food security and water extremes management, the user-need and 
gap analysis highlighted that for countries with initial, intermediate, and advanced 
maturity degrees alike, the application of EO for the monitoring of agriculture and for 
managing water extremes were both identified as key applications by the end-users. 
Additionally, food insecurity is highly related to risks and uncertainty that might be 
linked, at several timescales, to several factors, from a natural disaster or a humanitarian 
problem, to ongoing climate change. In that context, considering that agriculture is very 
prominent in the RoI, and that many countries within it (such as Greece, Albania, Serbia, 
Tunisia, and Turkey) were subjected in the recent past to water extremes (i.e. floods) 
with the subsequent adverse impacts and damages to agriculture and crop production, 
it is easy to infer that open EO data and EO applications are of high importance for the 
end-users. 

As far as the Balkans are concerned, agriculture is a very prominent theme across all the 
countries, being an important source of economic revenue. This underscores the 
importance of open EO data with respect to agriculture, which assist in a number of 
ways such as soil nutrient mapping, crop growth assessment, mapping of vegetation 
stress, and yield prediction. Likewise, the importance of EO systems, as accurate source 
of data, cannot be over-stated, in order to improve soil inventories, reporting and 
accounting activities within the region. Moreover, it becomes apparent why monitoring 
of water extremes is of pivotal importance; the adverse effects of e.g. a flood event are 
significant for the regional economies. In addition, the gap analysis showcased that both 
for the western Balkans (such as FYROM and Albania) the space capacities are limited, 
and the EO sector is mostly dominated by the public sector. Even for more intermediate 
and advanced countries (such as Greece and Romania) that exhibit developed EO 
capacities, structural gaps and lack of funding prohibit the private sector from acquiring 
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high quality commercial EO data, and open Copernicus data are not sufficiently 
exploited. The availability of open EO data and release of tools that help utilize them, 
may pave the way to future investments in this region, leading to sustainable 
development of resources and activities, in addition to strengthened competitiveness 
and performance in the key sector of agriculture. 

As far as the Middle East and North Africa regions are concerned, there are a number of 
setbacks in meeting food security. They are mostly due to the adverse effects of climate 
change (such as soil desertification), land and water scarcity, and discrepancy between 
high rates of population growth and low rates of food production growth. Despite the 
fact that some countries have attained an advanced maturity degree (such as Israel, and 
Turkey), having a large and mature public and private EO sector, other countries are 
lagging behind. This is attributed mostly to structural gaps (e.g. lack of data sharing, and 
lack of coordination) and capacity gaps (i.e. human resource limitations). 

Taking into consideration the above, the IFS-WEM pilot comes to meet these regional 
needs. Its aims are to improve agricultural management and assist the decision process 
regarding agricultural practices by providing enhanced insight of the agricultural lands, 
while also implement open and efficient tools for water extremes management. 

 

1.2. Overview of the pilot activities 

Healthy soil is the foundation of the food system. The organisms living in the soil perform 
many vital functions including converting dead and decaying matter as well as minerals 
to plant nutrients, which are vital for the growth of plants and ergo food. It is the 
processes that occur within soil, most of which are driven by the life that is found within, 
which drive ecosystem and global functions and thus help maintain life above ground. It 
is a fundamental and non-renewable natural resource which people rely on for the 
production of food, fibre and energy and forms as a basis for all life on Earth. Soils 
provide the basis for agriculture, being the medium on which plants grow, in addition to 
providing the nutrients to the plants. It is estimated that over 95% of food is produced 
from the soil ecosystem. They are thus instrumental for securing the food supply, as 
without healthy soils it is impossible to sustain the increased demand for food. Hence, 
without robust soil ecosystems, the world’s food web and in extension the humans 
would be in trouble, since soil produces healthy crops that in turn nourish people.  

However, in the recent years, soils have become one of the world’s most vulnerable 
resources in the face of climate change, land degradation, biodiversity loss and 
increased demand for food production [1].  Maintaining a healthy soil demands care and 
effort from farmers because farming is not benign. By definition, farming disturbs the 
natural soil processes including that of nutrient cycling - the release and uptake of 
nutrients. Farming systems mine the soil for nutrients and reduce the soil organic matter 
levels through repetitive harvesting of crops and inadequate efforts to replenish 
nutrients and restore soil quality. In addition, there exist a number of unprecedented 
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pressures on soil from degradation and urbanisation, which are threatening the above-
mentioned functions, and impend agro-ecological balances and food security. Thus, a 
profound change is necessary in order to move towards more sustainable ways of 
production so that they can provide in a sustainable way food for the additional 2 billion 
people expected by 2050. 
 
In that context and since the launch of Global Soil partnership (Food and Agriculture 
Organization, 2012), a wide range of activities with the main aim to strengthen and 
support soil ecosystem and its functions by improving the use of EO tools for site specific 
projections or forecasting has been implemented. These activities have made great 
strides towards developing methodologies and management practices, fostering 
ecosystem creation and raising awareness amongst the main stakeholders (e.g. the 5 
pillars of action – GSP). Along these lines, the G20 Ministerial Declaration launched the 
Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative in 
June 2011, with the aim of strengthening GLobal Agricultural Monitoring by improving 
the use of remote sensing tools for crop production projections. More recently, the role 
of soil ecosystem has been recognized as central to sustainable development since it 
contributes to a wide range of critical functions. In this line, the importance of 
monitoring land use and land use change for monitoring GHG emissions from 
agricultural activities has been recognized and prioritized in the context of the 2030 EU 
climate and energy framework (Decision No 529/2013/EU). Finally, the importance of 
monitoring a range of essential variables for the implementation of Sustainable 
Development Goals (SDGs) has been recognised and prioritized. 
 
It becomes apparent that it is vital to develop a methodology for the consistent 
monitoring of soil health at continental scale. The traditional approach of soil sampling 
is inefficient to cover large areas timely and regularly. Moreover, it requires complex 
analytical methods which are not consistent. A more efficient solution that provides a 
fast and low-cost method with sufficient accuracy is the application of soil spectroscopy. 
 
Visible and near-infrared (Vis-NIR) diffuse reflectance spectroscopy has proved to be a 
fast, cost- effective, environmental-friendly, non-destructive, reproducible, and 
repeatable analytical technique [2]. This technique, although used more often in the 
laboratory, can be applied both in-situ and using air- and space-borne sensors [3]. The 
driving idea of this approach, is that the soil physical and chemical properties can be 
inferred by statistical analysis of the reflectance spectrum of the soil. Considering that 
soil is a vastly complex material consisting of organic and inorganic mineral matter, and 
is highly spatially variable, this relationship becomes more difficult to model. 
 
Soil spectral libraries provide, in addition to spectral data, analytical data on a number 
of soil variables, allowing the calibration of multivariate models covering larger soil 
variability than the models calibrated using local libraries. Recently, large soil spectral 
libraries (SSLs) have been developed at very large scales (e.g. the Australian SSL [4] and 
the Chinese SSL [5]). In Europe, the LUCAS soil spectral library [6] is comprised of 19,036 
soil samples across 23 EU countries, a task which was undertaken within the frame of 
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the Land Use / Land Cover Area Frame Survey (LUCAS). Recently, a global SSL was 
developed, which gathered all existing and compatible SSLs [7]. These large SSLs can be 
used not only to infer the soil properties on the continental scale, but can assist in the 
development of more local (i.e. regional or country-level) models; new data collected 
(provided that they adhere to the same standards) can be used in conjunction with 
existing SSLs to build models that are more robust and accurate (e.g. by using the so 
called spiking strategy [8]).However, in all of these SSLs, the region of interest 
(encompassing the Balkans, North Africa, Middle East, Cyprus, and Turkey) is severely 
underrepresented and inhomogeneous; spanning from the absolute absence of 
samples, to countries having only a handful of samples. 
 
In these recent efforts for the development of SSLs, i-BEC and TAU have in the past years 
established local SSLs at their country level, adhering to the global standards. TAU has a 
number of peer-reviewed publications on the development of SSLs and their application 
using EO data (e.g. [9]–[13]) and has an advanced maturity level in the usage of SSL, as 
well as in the dissemination of the know-how needed to establish one. On the other 
hand, i-BEC has recently established a large local SSL in Greece [14], has significant 
expertise in applied machine learning [15] and has also applied soil spectroscopy to 
measure soil contamination [16]. Furthermore, i-BEC, being the regional coordinator in 
the Balkans has significant expertise on know-how of how to best apply the developed 
SSL and derive products which may be of significant value for end-users and 
stakeholders alike. 
 
The overarching objective of the Improved Food Security – Water Extremes 
Management pilot is to develop a regional SSL in the RoI, as well as disseminate all the 
knowledge and tools necessary to the partners so that they may use it effectively to 
derive soil thematic maps using laboratory, in situ, and satellite data, thus developing 
their capacities. To this end, partners were taught how to perform effective soil sampling 
in the region, and where trained on how to perform spectral measurements following a 
robust standardization and measurement protocol. In addition, the process of building 
robust and accurate machine learning models was shared with the partners. Finally, a 
methodology on how to apply this SSL on a local basis was showcased in a feasibility 
study in the Drin River basin, located in Northern Albania. 
 
The rest of the deliverable is organized as follows: Section 2 describes the 
implementation of the pilot activity, covering all technical aspects. In particular, Section 
2.1 describes the steps taken to establish the regional SSL and also contains an in-depth 
description of its components both on a per-country level as well as a whole. In Section 
2.2 the myDEWETRA platform is presented, showcasing its ability to depict all 
information stored in a user-friendly way. The machine learning algorithms and 
techniques applied to develop soil spectroscopy models may be found in Section 2.3. 
The feasibility study’s methodology and results are described in Section 2.5. 
Additionally, in Section 2.6 the training sessions and webinars conducted during the 
course of this activity are detailed. A brief overview of the outcomes may be found in 
Section 2.7. The pilot implementation is analyzed in Section 3, with its positive outcomes 
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as well as potential shortcomings outlined in Sections 3.1 and 3.2 respectively. The 
conclusions of this work and future considerations are described in Section 3.3. In 
Appendix A, the protocol followed during soil sampling from the partners may be found, 
which can assist future researchers to sample their region and contribute to the SSL. 
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2. Project implementation report 

2.1. Development of regional soil spectral library 

This section describes the process of building the regional soil spectral library of the 
region. Despite the fact that there have been quite a few efforts recently to create large 
soil spectral libraries (e.g. the LUCAS SSL in the European Union [6] and a global SSL [7]) 
the Balkans and the MENA region are currently under-represented. During the 
implementation of this task, a consolidated effort was realized to create a regional SSL 
with high standards, compatible with other efforts worldwide, and extensible, focusing 
on this underrepresented region. In the subsection that follows the methodology used 
to populate this SSL, and the samples comprising it are described. 

In the second project meeting, conducted in Limassol, Cyprus in November of 2016, the 
partners participating in this task were handed a protocol to follow in order to collect 
and measure the soil samples. This protocol is presented in Appendix A. The instructions 
presented the partners with two options: a) either find samples already collected and 
measured by e.g. their local university or any other laboratory who would agree to hand 
them out to them, b) or collect the soil samples themselves following a detailed 
protocol. The first option is useful because sampling campaigns are costly, and soil 
archives stored by universities, research centres, agriculture associations, and 
government agencies could have provided an economical opportunity to enlarge the 
regional spectral library; even if the samples had been acquired decades ago, they still 
contain spectral information which could be utilized to improve the representability of 
the spectroscopic calibration models. 

As far as new samples are concerned, it was decided to follow stratified sampling. In 
stratified sampling, the population is partitioned into non-overlapping groups, called 
strata and a sample is selected by some design within each stratum. The principal 
reasons for using stratified random sampling rather than simple random sampling 
include: 

 Stratification may produce a smaller error of estimation than would be produced 
by a simple random sample of the same size. This result is particularly true if 
measurements within strata are very homogeneous. 

 The cost per observation in the survey may be reduced by stratification of the 
population elements into convenient groupings. 

 Estimates of population parameters may be desired for subgroups of the 
population. These subgroups should then be identified. 

 If measurements within strata have lower standard deviation, stratification gives 
smaller error in estimation. 

 For many applications, measurements become more manageable and/or 
cheaper when the population is grouped into strata. 

 It is often desirable to have estimates of population parameters for groups within 
the population. 
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2.1.1. Physical and Chemical analytical measurements 

2.1.1.1. Soil texture 

Soil texture is an important characteristic of mineral soils. It affects water holding 
capacity, drainage properties, root development and more. Because texture has a great 
effect on water movement through a soil, it also directly affects the rate at which 
pesticides and nutrients move through the soil. Soil particles, such as clay, can also bind 
up certain elements and nutrients, directly affecting the soil’s ability to retain the 
nutrients. Fine textured soils generally have a higher capacity for water retention, 
whereas sandy soils contain large pore spaces that allow leaching. Soil textures are 
classified by the fractions of each soil separate (sand, silt, and clay) present in a soil. 
Classifications are typically named for the primary constituent particle size or a 
combination of the most abundant particles sizes, e.g. "sandy clay" or "silty clay". A 
fourth term, loam, is used to describe equal properties of sand, silt, and clay in a soil 
sample, and lends to the naming of even more classifications, e.g. "clay loam" or "silt 
loam"; determining the soil texture is often aided with the use of a soil texture triangle 
(Figure 2-1). 

 
Figure 2-1. Soil characterization according to its texture – soil texture classes (WRB and USDA) 

The mineral components of the soil are: 
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 Coarse fragments: Greater than 2 mm and include coarse quartz, rock fragments 
and cemented material. This is commonly called the ‘gravel fraction’. 

 Sand: Comprise quartz and resistant primary minerals such as mica. Sand 
particles are between 2 mm and 20 microns in size (Note: there are 1000 microns 
in 1 mm). 

 Silt: Silts are typically composed of quartz and small mineral particles such as 
feldspars and mica and are between 2 and 20 microns in diameter. 

 Clay: Clays are made up of secondary clay minerals and oxides/oxyhydroxides of 
iron and aluminium and are less than 2 microns in diameter. 

 

2.1.1.2. Soil Organic matter 

Soil organic matter (SOM) is the organic matter component of soil. It is the product of 
on-site biological decomposition and affects the chemical and physical properties of the 
soil and its overall health. It consists of plant and animal residues at various stages of 
decomposition, cells and tissues of soil organisms, and substances synthesized by soil 
organisms [17]. The composition and breakdown rate of SOM affect: the soil structure 
and porosity; the water infiltration rate and moisture holding capacity of soils; the 
diversity and biological activity of soil organisms; and plant nutrient availability. As such, 
SOM exerts numerous positive effects on soil physical and chemical properties, as well 
as the soil’s capacity to provide regulatory ecosystem services. Particularly, the presence 
of SOM is regarded as being critical for soil function and soil quality. SOM is composed 
of roughly 58% carbon [18] which corresponds to SOC and is influenced by microbial 
activity, accessibility of organic residues to microbes, various site conditions and 
management practices. Managing SOC through sustainable agricultural and land use 
practices has become a widely acknowledged strategy to restore healthy soil properties 
to combat land degradation and desertification, and enhance the resilience of agro-
ecosystems to environmental shocks. Thus, the importance of SOM in agriculture is 
paramount. 

Two common methods for analysis of soil organic matter are the Walkley-Black acid 
digestion method and the weight loss on ignition method. The Walkley-Black method, 
used since the 1930’s, uses chromic acid to measure the oxidizable organic carbon in a 
soil and is more accurate and more precise on soils with less than 2.0% organic matter. 
On soils very high in organic matter, the Walkley-Black method may result in low test 
results, due to the incomplete oxidation of the organic carbon in the sample. The Loss 
on Ignition method is better suited to soils with greater than 6.0% organic matter, 
however it should be used carefully due to changes in weight measurement caused by 
absorption of water molecules and changes in mineralogy occurring during the 
combustion process. 
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2.1.1.3. Calcium Carbonate (CaCO3) 

Calcium carbonate is a common substance found in rocks in all parts of the world, and 
is the main component of shells of marine organisms, snails, coal balls, pearls, and 
eggshells. Calcium carbonate is the active ingredient in agricultural lime, and is created 
when calcium ions in hard water react with carbonate ions creating limescale. 
Agricultural lime, powdered chalk or limestone, is used as a cheap method for 
neutralizing acidic soil (see Subsection 2.1.1.4), making it suitable for planting. 

CaCO3 is measured in soils usually following one of the two below listed methodologies: 
1) It is either calculated from the weight of CO2 lost after treating a sample with excess 
hydrochloric acid, or 2) from the pH of a suspension of the soil in dilute acetic acid. If a 
laboratory measurement protocol is closely followed, these methods can be quite 
accurate and produce reliable results [19]. 

 

2.1.1.4. pH 

Soil pH is a measure of the acidity or basicity of a soil, and measures the concentration 
of hydrogen ions in the soil solution. The lower the pH of the soil, the greater its acidity. 
Soil pH is considered a master variable in soils as it affects many chemical processes. 
Although not a nutrient itself, it relates to plant nutrition. It specifically affects plant 
nutrient availability by controlling the chemical forms of the different nutrients and 
influencing the chemical reactions they undergo. Plant growth and most soil processes, 
including nutrient availability and microbial activity, are favoured by a soil pH range of 
5.5–8. Acid soil, particularly in the subsurface, will also restrict root access to water and 
nutrients. 

Soil acidification is a natural process accelerated by agriculture. Soil acidifies because 
the concentration of hydrogen ions in the soil increases. The main cause of soil 
acidification is inefficient use of nitrogen, followed by the export of alkalinity in produce. 
Acid rain and excessive plant growth are also significant sources of acidity. In contrast, 
the accumulation of alkalinity in a soil (as Na, K, Ca and Mg bicarbonates and carbonates) 
occurs when there is insufficient water flowing through the soils to leach soluble salts. 
This may be due to arid conditions, or poor internal soil drainage. 

Thus, considering that soil pH effects both nutrient availability and microbial activity, the 
monitoring of it is significant to ensure sustainable agriculture and enhance the food 
security of the soils. 
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2.1.1.5. Nitrates 

Soil nitrate (𝑁𝑂3
−) is a form of inorganic nitrogen (N) naturally occurring in soils. Nitrates 

are used as fertilizers in agriculture, because of their high solubility and biodegradability. 
Nitrates are a highly mobile nutrient in the soil. The polyatomic ion of nitrate is 
negatively charged and hence cannot be held on to by negatively charged soil (clay and 
silt) particles. As a consequence, it is vulnerable to being leached down the soil profile. 
Nitrogen is a necessity in crop growth as shortage of this nutrient lead to poor crop 
growth, reduced yield and economic loss to the farmer. By knowing the amount of soil 
nitrogen in the soil, the farmers can be more accurate in their application of additional 
nitrogen. Knowledge of soil nitrogen level also helps reduce the amount of 
environmental pollution that occurs from runoff of excess nitrogen in the soil. 

 

2.1.1.6. Electrical Conductivity 

Electrical conductivity (EC) is a measurement of the dissolved material in an aqueous 
solution, which relates to the ability of the material to conduct electrical current through 
it. EC is measured in units called Siemens per unit area (mS/cm), and the higher the 
dissolved material in a water or soil sample, the higher the EC will be in that material. 

The electrical conductivity of soils varies depending on the amount of moisture held by 
soil particles. As a general rule, sandy soils have a low conductivity, silts have a medium 
conductivity, and clays have a high conductivity. Consequently, EC correlates strongly to 
soil particle size and texture. In addition to EC values separating variations in soil texture, 
EC has been shown to relate closely to other soil properties used to determine a field’s 
productivity. These are the water-holding capacity / drainage, the cation exchange 
capacity (CEC) which is related to SOM, soil porosity, and soil salinity. 

 

2.1.1.7. Cation Exchange Capacity (CEC) 

The cation-exchange capacity (CEC) is a measure of how many cations (positively 
charged ions) can be retained on soil particle surfaces. The clay mineral and organic 
matter components of soil have negatively charged sites on their surfaces which adsorb 
and hold positively charged ions (cations) by electrostatic force. This electrical charge is 
critical to the supply of nutrients to plants because many nutrients exist as cations (e.g. 
magnesium, potassium and calcium). In general terms, soils with large quantities of 
negative charge are more fertile because they retain more cations. It is a significant soil 
property which influences the stability of the soil structure, nutrient availability, soil pH, 
and the soil’s reaction to fertilisers. This is an inherent soil characteristic and is difficult 
to alter significantly. 
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2.1.2. Soil class according to WRB 

The World reference base (WRB) for soil resources is an international soil classification 
system for naming soils [20]. The classification of soils is based on soil properties defined 
in terms of diagnostic horizons, diagnostic properties and diagnostic materials, which to 
the greatest extent possible should be measurable and observable in the field. Climate 
parameters are not taken into account for the classification of a soil sample; it is 
therefore not subordinated to the availability of climate data, and thus the class 
attributed to a sample will not become obsolete due to global or local climate change. 

The WRB classification system comprises two levels of categorical detail: 

 the First Level consisting of 32 Reference Soil Groups (RSGs); 

 the Second Level, which is the name of the RSG combined with a set of principal 
and supplementary qualifiers. 

 
Table 2-1. First Level of the 32 reference soil groups of WRB [20] 

Description Class Abbreviation 

1. Soils with thick organic layers: Histosols HS 

2. Soils with strong human influence – 
  

With long and intensive agricultural use: Anthrosols AT 

Containing significant amounts of artefacts: Technosols TC 

3. Soils with limitations to root growth – 
  

Permafrost-affected: Cryosols CR 

Thin or with many coarse fragments: Leptosols LP 

With a high content of exchangeable Na: Solonetz SN 

Alternating wet-dry conditions, shrink-swell clays: Vertisols VR 

High concentration of soluble salts: Solonchaks SC 

4. Soils distinguished by Fe/Al chemistry – 
  

Groundwater-affected, underwater and in tidal areas: Gleysols GL 

Allophanes or Al-humus complexes: Andosols AN 

Subsoil accumulation of humus and/or oxides:  Podzols PZ 

Accumulation and redistribution of Fe:  Plinthosols PT 

Low-activity clay, P fixation, many Fe oxides, strongly structured:  Nitisols NT 

Dominance of kaolinite and oxides:  Ferralsols FR 

Stagnating water, abrupt textural difference:  Planosols PL 

Stagnating water, structural difference and/or moderate textural 
  

difference:  Stagnosols ST 

5. Pronounced accumulation of organic 
  

matter in the mineral topsoil – 
  

Very dark topsoil, secondary carbonates:  Chernozems CH 

Dark topsoil, secondary carbonates:  Kastanozems KS 

Dark topsoil, no secondary carbonates (unless very deep), high base 
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Description Class Abbreviation 

status:  Phaeozems PH 

Dark topsoil, low base status:  Umbrisols UM 

6. Accumulation of moderately soluble 
  

salts or non-saline substances – 
  

Accumulation of, and cementation by, secondary silica:  Durisols DU 

Accumulation of secondary gypsum:  Gypsisols GY 

Accumulation of secondary carbonates:  Calcisols CL 

7. Soils with clay-enriched subsoil – 
  

Interfingering of coarser-textured, lighter coloured material into a 
  

finer-textured, stronger coloured layer:  Retisols RT 

Low-activity clays, low base status:  Acrisols AC 

Low-activity clays, high base status:  Lixisols LX 

High-activity clays, low base status:  Alisols AL 

High-activity clays, high base status:  Luvisols LV 

8. Soils with little or no profile differentiation – 
  

Moderately developed:  Cambisols CM 

Sandy:  Arenosols AR AR 

Stratified fluviatile, marine and lacustrine sediments:  Fluvisols FL 

No significant profile development:  Regosols RG 

 

2.1.3. Spectral measurements 

The recording of the laboratory spectral signatures in the vis-NIR (350-2500nm) from 
the soil samples comprising the GEO-CRADLE SSL was made at two different locations 
using two different instruments, one in Thessaloniki, Greece by i-BEC and one in Tel-
Aviv, Israel by TAU. TAU operates an ASD Fieldspec Pro spectrometer while i-BEC 
operates a PSR+3500 spectrometer from Spectral Evolution (Figure 2-2). While they 
both cover the same range with approximately the same spectral resolution, they are 
different instruments and use different sensors. As such, and to ensure the SSL’s ability 
to be further extendable and compatible with other regional SSL, it was necessary to 
follow a precise measurement and standardization protocol. The full details of the 
protocol may be found in [9], [10]. The protocol is time and wavelength independent to 
account for the ambient conditions and can correct for systematic and non-systematic 
errors. 
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Figure 2-2. The PSR+ spectrometer by Spectral Evolution used by i-BEC 

 

To begin with, the protocol requires some initial processing of the soil samples. 
Considering that the particle size of the soil sample, as well as its water content 
significantly impacts the recorded spectrum. To eliminate these unwanted artefacts and 
effects on the recorded spectra, each physical soil sample was ground to approximately 
2mm. The sample was subsequently passed through a sieve (<2mm) to ensure that no 
large particles or plant residues were left in the sample. This process was made carefully, 
and it was ensured that each sample after this operation was at least 100g. The sample 
was then air dried for at least one week prior to any spectral measurements, and the 
room temperature and relative humidity of the room were recorded. 

i-BEC used a dark box environment for the measurement of soil reflectance with a bare 
fibre (and no contact with the soil) using a specific set viewing and illumination geometry 
(Figure 2-3). It consists of two 12 V and 35 W tungsten halogen lamps that illuminate the 
sample at 45°. The bare fibre is set up to measure the soil sample from the nadir position, 
covering a field of view (FOV) of 100 mm diameter of the sample’s surface. The 
measurements are done under a constant distance of the sample to the fore optic (10 
cm). The instrument is operated using a PDA. TAU performed the spectral 
measurements using a contact probe. Each soil sample was measured 3 times and the 
average spectrum was calculated for further analysis. 
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Figure 2-3. Inside view of the dark box 

 
Figure 2-4. The PDA used to connect to the spectrometer 



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 15 

 

 
Figure 2-5. The setup used by TAU 

To standardize the soil spectra, two internal soil standard (ISS) was used. The soil 
samples used as ISS were acquired from the Lucky and Wylie Bay in Western Australia 
(Figure 2-6). These samples were found to be stable in space and time and to hold a 
stable soil structure and spectral response common to soils. They are quite 
homogeneous and almost monomineralic (quartz). Both i-BEC and TAU are in possession 
of these samples, and it is the measurements of these ISS that can standardize the soil 
spectra. 

 
Figure 2-6. Location of Lucky and Wylie Bay from where the ISS were collected 
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Figure 2-7. The Lucky Bay and Wylie Bay samples placed inside a petri dish 

The steps taken to perform a spectral recording now follow. 

1. First, the spectrometer and the lamps are warmed up for a minimum of 60 min 
to ensure that any transient effects are gone, and the instrument and 
illumination is stable 

2. The instrument is set up to perform 20 internal averages for each recorded 
spectrum, and the integration time is set to auto 

3. The reflectance of a white reference (WR) is acquired (Figure 2-8)- this is 
repeated until the WR measurement is stable 

4. A petri dish is used to place the first ISS and its surface is gently smoothed against 
a dry flat disc 

5. The ISS is placed into the dark box, directly beneath the fibre optic 
6. The dark box is closed, ensuring no ambient light may enter the chamber 
7. The reflectance of the ISS is acquired 5 times – if the coefficient of variation 

exceeds 5% in any of the wavelengths, the measurements are repeated, 
otherwise the mean spectrum is retained 

8. Steps 4-7 are repeated for the other ISS 
9. Steps 4-7 are repeated for the soil sample 
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Figure 2-8. The white reference plate used closed (a) and open (b) 

Having acquired the spectra for each soil sample, the spectra are standardized using the 
ISS. First a correction factor is calculated for every single wavelength. Since two different 
ISS are employed, the final correction factor is the average of the two corrections factors 
(one for each reference soil). The correction factor is calculated as: 

𝐶𝐹(𝜆) = 1 −
𝑆𝜌(𝜆) − 𝑆𝐵𝑀𝜌(𝜆)

𝑆𝜌(𝜆)
 

Where: 

𝐶𝐹(𝜆) The correction factor per wavelength 

𝑆𝜌(𝜆) The reflectance of the reference 

𝑆𝐵𝑀𝜌(𝜆) The reflectance of the soil benchmark 

Then, after the two correction factors are calculated a 

nd averaged, the standardized reflectance spectrum is calculated as: 

𝑅𝑐(𝜆) = 𝑅𝑜(𝜆) × 𝐶𝐹𝑎𝑣𝑔(𝜆) 

Where: 

𝑅𝑐(𝜆) The corrected reflectance 

𝑅𝑜(𝜆) The initial reflectance 

𝐶𝐹𝑎𝑣𝑔(𝜆) The average correction factor 
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Figure 2-9. Soil benchmark values for each internal soil standard used 

 

2.1.4. Samples origin 

2.1.4.1. Albania 

In Albania, INCA was unable to acquire soil samples from other resources (such as other 
institutions). Furthermore, Albania was chosen to host one of the feasibility studies 
undertaken in this pilot activity, namely the case of the Drin River basin (see Section 2.5). 
As such, it was important to obtain new samples from this region, in order to be able to 
showcase their use in conjunction with the Copernicus EO data. To this end, INCA 
followed the protocol given to all members by i-BEC and TAU with respect to the process 
that should be followed to collect the soil samples. 

More concretely, first a soil pedological map of Albania was studied. As this provided a 
static snapshot of the region, a further recently acquired satellite image (18/05/2017) 
was examined to identify the current soil status of the area. The land cover type of the 
river basin was examined, in order to find out the exact sites with bare soil land. 
Moreover, the spatial variability of some remote sensing soil indices was taken into 
account. Finally, the accessibility of the sampling sites was assessed. All the above 
criteria dictated, through optimization, the preferred soil sampling locations. A number 
of 150 potential soil sampling locations were identified, 119 in the Shkodra region, 16 in 
Kukes, and 15 in Pogradec. This was estimated to take about 7 days of field work to 
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conclude the collection of the samples. The location of the final sampling points is 
depicted in Figure 2-10. 

 
Figure 2-10. Location of the soil samples of Albania 

The results of the physical and chemical analysis (including the in-situ measurements of 
soil moisture) are depicted in Table 2-2 and Figure 2-11 in the form of boxplots. It is 
noteworthy to highlight the fact that there is a highly outlier soil sample in terms of 
organic matter. In fact, the value is around 36, which following the FAO definition of 
organic soil materials [20] classifies the sample as belonging to an organic soil. Organic 
soils (i.e. soils with more than 20% of organic carbon content) are formed mainly in 
waterlogged conditions, where the anaerobic soil conditions support the preservation 
of vegetation residues and litter and their transformation to peat. As such, it is expected 
that their respective spectral signatures are different than the ones belonging to mineral 
samples (i.e. soils with less than 20% of organic carbon content).  

The corresponding distribution of the patterns to the soil classes according to the WRB 
soil classification may be found in Figure 2-13. The vast majority of the samples are 
Fluvisols and Luvisols. The former class is characterized by little profile differentiation 
and contain fluviatile, marine, and lacustrine sediments. This is more consistent with the 
Shkodra region. The former class is characterized by high activity clays and soils with clay 
enriched subsoil, more consistent with the other regions. 

The spectral signatures are given in Figure 2-14. Due to the fact that most samples may 
be classified as silty (Figure 2-12), the spectral signatures are somewhat flat, particularly 
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in the vis-NIR region. The SWIR region, dominated by the clay minerals, is more 
prominent. 

 
Table 2-2. Major statistical moments of the measured soil properties of Albania 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.71 2.88 2.29 35.78 3.49 7.93 70.86 107 

Sand (%) 0.40 22.83 22.10 80.50 13.92 0.83 1.68 107 

Silt (%) 6.90 43.08 43.70 67.40 11.92 -0.32 -0.34 107 

Clay (%) 12.60 34.08 31.80 72.60 15.18 0.66 -0.61 107 

Moisture (%) 1.34 41.78 6.53 12.28 11.55 0.96 3.22 107 

 

 
Figure 2-11. Boxplots of the measured soil properties for Albania 
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Figure 2-12. Distribution of soil texture class across all soil samples for Albania 

 
Figure 2-13. Histogram of soil classes of the soil samples of Albania 
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Figure 2-14. The standardized reflectance spectra of Albania (mean ± standard deviation) 

2.1.4.2. Bulgaria 

In Bulgaria, SRTI could not obtain soil samples from previous soil sampling campaigns. 
Therefore, new soil samples had to be acquired. Due to the severe winter conditions in 
January-March 2017, the soil sampling campaign was postponed until the weather 
conditions became more favourable. It was conducted during May-September of 2017. 
The location of the soil samples is presented in Figure 2-15, whereas Table 2-3 and Figure 
2-16 depict the results of the chemical analyses. The textural class of the soil samples is 
illustrated in Figure 2-17, while Figure 2-18 presents the soil class according to WRB. The 
samples from Bulgaria are mostly Luvisols, Cambisols, and Fluvisols. The soil classes of 
CM and FL present little profile differentiation, while the Luvisols contain high activity 
clays. Indeed, the results indicate that some samples have high clay content. 
Nevertheless, the samples are well distributed across the dominant soil classes of the 
region. This is also portrayed through the spectral signatures (Figure 2-19), characterized 
by well-defined visible regions, and good activity in the SWIR region (dominated mostly 
by clay minerals). 
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Figure 2-15. Location of the soil samples of Bulgaria 

 
Table 2-3. Major statistical moments of the measured soil properties of Bulgaria 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.00 1.61 1.43 7.86 1.17 1.82 6.97 91 

Sand (%) 4.10 41.61 44.00 84.10 21.98 0.03 -1.15 94 

Silt (%) 11.30 27.77 24.50 49.30 9.80 0.51 -0.98 94 

Clay (%) 4.60 30.67 28.10 77.90 18.11 0.41 -0.76 94 

CaCO3 (mg/L) 1.22 6.90 7.51 12.90 4.60 -0.08 -1.86 6 

pH (H20) 3.50 5.82 6.00 7.50 1.04 -0.43 -0.73 94 

CEC 68.00 87.10 88.00 100.00 8.55 -0.33 -0.77 93 
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Figure 2-16. Boxplots of the measured soil properties for Bulgaria 

 
Figure 2-17. Distribution of soil texture class across all soil samples for Bulgaria 
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Figure 2-18. Histogram of soil classes of the soil samples of Bulgaria 

 
Figure 2-19. The standardized reflectance spectra of Bulgaria (mean ± standard deviation) 
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2.1.4.3. Cyprus 

 
Figure 2-20. Location of the soil samples of Cyprus 

 
Table 2-4. Major statistical moments of the measured soil properties of Cyprus 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.00 0.66 0.08 6.30 1.41 2.51 5.14 96 

Sand (%) 25.80 64.14 63.75 88.10 14.95 -0.35 -0.81 94 

Silt (%) 10.00 26.36 26.60 46.50 9.22 0.12 -0.98 94 

Clay (%) 1.50 9.12 7.10 37.20 7.15 1.51 2.57 94 

CaCO3 (%) 1.25 22.47 7.30 81.50 24.96 0.84 -0.93 96 

pH (H20) 5.95 7.91 7.97 10.07 0.72 0.08 0.61 96 

EC (mS) 0.5 1.52 1.35 6.60 0.95 2.34 11.40 96 
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Figure 2-21.  Boxplots of the measured soil properties for Cyprus 

 
Figure 2-22. Distribution of soil texture class across all soil samples for Cyprus 
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Figure 2-23. Histogram of soil classes of the soil samples of Cyprus 

 
Figure 2-24. The standardized reflectance spectra of Cyprus (mean ± standard deviation) 



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 29 

 

2.1.4.4. Egypt 

Egypt, being the only country representing North Africa in the regional SSL was identified 
as an important asset in the regional SSL. However, the case of Egypt had increased 
difficulties. Despite the fact that there exist detailed soil libraries in Egypt (with physical 
soil samples and their assorted physical and chemical measurements), the partners of 
CEDARE were unable to obtain official permits to send a large number of physical soil 
samples with sufficient enough matter (i.e. mass and volume) to i-BEC, Greece. In light 
of this event, and given that CEDARE didn’t possess the necessary equipment to perform 
standardized spectral measurements themselves, CEDARE managed to send only a small 
number of samples to i-BEC. The total number of samples that are in the GEO-CRADLE 
SSL from Egypt is 10, and their location is presented in Figure 2-25. Due to the small 
number of samples which cannot be representative of the whole country, no statistical 
information from this population was derived. 

 
Figure 2-25. Location of the soil samples of Egypt 

2.1.4.5. FYROM 

USCM obtained 124 physical soil samples from a prior sampling campaign, conducted in 
2015. They cover a large region of the country’s pedological variability and are 
representative of the country (Figure 2-28). The chemical analysis results are given in 
Figure 2-27 and Table 2-5. As far as the textural parameters are concerned, only the Clay 
Fraction is available. Nevertheless, the soil class of the samples (Figure 2-28) which 
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indicate that the samples are mostly Fluvisols, and their respective spectral signatures 
(Figure 2-29) indicate that the samples are mostly silty, with limited clay content.  

 
Figure 2-26. Location of the soil samples of FYROM 
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Figure 2-27. Boxplots of the measured soil properties for FYROM 

 
Table 2-5. Major statistical moments of the measured soil properties of FYROM 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.33 1.5895 1.55 3.60 0.5548 0.7159 1.1995 124 

Clay (%) 18.60 37.3032 35.80 89.70 13.0390 1.2824 2.1375 124 

pH (H20) 5.05 6.5098 6.42 8.47 0.8536 0.5096 -0.3976 124 

pH (KCl) 4.10 5.5619 5.47 7.66 0.8941 0.6175 -0.3575 124 
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Figure 2-28. Histogram of soil classes of the soil samples of FYROM 

 
Figure 2-29. The standardized reflectance spectra of FYROM (mean ± standard deviation) 
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2.1.4.6. Greece 

The soil samples of Greece originate from one of the thirteen administrative regions in 
Greece, namely the region of Eastern Macedonia and Thrace, located in North-Eastern 
Greece (Figure 2-30). The area of interest is the agricultural lands surrounding the 
Nestos River, covering an area of approximately 600 square kilometres (Figure 2-31). 
The river Nestos is one of the largest in Greece, stems from Bulgaria and flows into the 
Thracian sea. The geology of this area is characterized primarily by the alluvial deposits 
of the river. It is a relatively flat area, with an altitude between 15-90m, while the 
inclinations are less than 4%. The most cultivated crops in these lands are kiwi fruits, 
plum trees, peach trees, nectarine trees, asparagus crops, and apricot trees. 

 

 
Figure 2-30. Relative location of the Eastern Macedonia and Thrace region in northern Greece 

The soil samples were collected between April and June of 2015 within the frame of the 
European Project “AGROLESS – Joint reference strategies for rural activities of reduced 
inputs” (B3.11.02) of the European Territorial Cooperation Programme “Greece- 
Bulgaria 2007-2013”. To identify the sampling locations, a stratified sampling was 
conducted using as strata the Great Group of the USDA soil taxonomy system. The soils 
were sampled from three different layers, denoted as layer A (0-30 cm), Layer B (30-60 
cm), and Layer C (60-90 cm). 

Table 2-6 depicts significant statistical moments of the measured soil properties, while 
Figure 2-33 illustrates them in a form of a Notch boxplot. The soil textural class of the 
samples may be found in Figure 2-35. From these, we can infer that the soils in this area 
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are mostly sandy, and somewhat moderate in terms of organic matter. The lower values 
of organic matter are due to the fact that approximately a third of the samples were 
collected from the deeper layer C. The soil class distribution of the soil samples is 
presented in Figure 2-35. The most predominant classes are the Fluvisols and Leptosols. 
The reflectance spectra after standardization are given in Figure 2-36. The high overall 
observed reflectance may be attributed to the large presence of sand, which shifts the 
reflectance upwards due to the particle size effect. There exists a significant rise in the 
visible part of the spectrum, and the small absorption band around 900 nm may be 
attributed to the presence of iron.  

 
Figure 2-31. The Nestos river delta, and the surrounding agricultural lands 
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Figure 2-32. Location of the soil samples of Greece 

Table 2-6. Major statistical moments of the measured soil properties of Greece 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0 0.9401 0.86 4.18 0.6287 1.0880 2.0493 928 

Sand (%) 2 59.0043 59.00 99.00 20.4710 0.0945 -0.6216 928 

Silt (%) 0 26.1272 26.00 68.00 14.7009 0.0858 -0.8567 928 

Clay (%) 0 14.9321 13.00 91.00 11.1773 1.8031 5.5072 928 

NO3 ppm 0 17.7938 5.60 661.20 38.9528 7.4106 92.3701 928 

CaCO3 (%) 0 0.5033 0.00 40.30 2.1806 11.4630 172.7943 928 
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Figure 2-33. Boxplots of the measured soil properties for Greece 

 
Figure 2-34. Distribution of soil texture class across all soil samples for Greece 
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Figure 2-35. Histogram of soil classes of the soil samples of Greece 

 
Figure 2-36. The standardized reflectance spectra for Greece (mean ± standard deviation) 
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2.1.4.7. Israel 

The soil database of Israel contains 221 soil samples which were collected from various 
geographic locations and depths. The chemical-physical properties which were included 
in the dataset and the number of samples from each property (in addition to major 
statistical moments) are to be found in Figure 2-38 and Table 2-7. 

The dataset contains soil samples that were collected in 1970, 1989 and 2017. The 1970 
samples were collected by the Ministry of Agriculture and Rural Development as part of 
a national soil survey project. The 1989 samples were collected and analysed by 
Professor Eyal Ben-Dor, as part of his Ph.D. degree. The most recent samples were 
collected by Ms. Nurit Ben Hagai from Sherut sade Zemach (http://www.zemach-
nisyonot.co.il) as part of a local soil survey project.  

To identify the sampling locations, a stratified sampling was conducted using as strata 
the subgroup of the USDA soil taxonomy system. Soils were sampled according the 
diagnostic horizons exist in each profile. Therefore, some profiles contain 2 samples 
while others 6 samples. 

Table 2-7 shows the soil property measures of the database and Figure 2-38 present it 
in a form of a boxplot. The low values of OM in the dataset are due to the location of 
the sampling points. Most of the samples were collected in semi-arid and arid climate 
zones (the southern and eastern part of Israel) or from the lower part of the soil profiles. 
The arid climates together with the limestone bedrock in the central mountain range 
also affect the high percentages of calcium carbonate and the higher clay contents 
(Figure 2-39) in the samples. In contrast, the coastal areas are dominated mostly by the 
sandy soils texture whose continuity is interrupted by alluvial sedimentation. 

 

http://www.zemach-nisyonot.co.il/
http://www.zemach-nisyonot.co.il/
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Figure 2-37. Location of the soil samples of Israel 

 
Figure 2-38. Boxplots of the measured soil properties for Israel 
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Table 2-7. Major statistical moments of the measured soil properties of Israel 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.09 2.2858 1.43 13.23 2.4412 2.1144 8.1727 113 

Sand (%) 4.03 45.7762 40.80 97.50 24.4758 0.3489 2.1616 168 

Silt (%) 0.00 21.8301 21.15 51.80 13.1211 0.0242 1.9686 168 

Clay (%) 0.20 32.3180 29.95 94.80 19.4955 0.8566 3.4469 168 

CaCO3 (%) 0.00 26.3482 21.30 68.34 18.5582 0.5502 2.3537 169 

pH (H20) 6.50 7.6060 7.60 8.51 0.3914 -0.0965 2.7976 136 

EC (μS) 0.07 1.2049 0.67 7.97 10.5286 0.5385 8.64260 141 

 
Figure 2-39. Distribution of soil texture class across all soil samples for Israel 
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Figure 2-40. Histogram of soil classes of the soil samples of Israel 

 
Figure 2-41. The standardized reflectance spectra of Israel (mean ± standard deviation) 
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2.1.4.8. Serbia 

Serbia is a country which prior to the GEO-CRADLE project had not contributed in any 
effort to establish a soil spectral library. In other words, the dataset made available 
through GEO-CRADLE is the first effort to create an open SSL for the country, adhering 
to strict standards. Although no SSL existed, some soil libraries and soil sampling 
campaigns were conducted, primarily for the development of soil classification maps 
and soil thematic maps of the area. The IPB was able to secure a number of such soil 
samples which were sampled in previous years, and no new soil sampling campaigns 
were conducted. The location of these soil samples is depicted in Figure 2-42; it covers 
a number of regions in the country. The results of the chemical analysis may be found in 
Table 2-8 and Figure 2-43. 

 
Figure 2-42. Location of the soil samples of Serbia 

Table 2-8. Major statistical moments of the measured soil properties of Serbia 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.11 1.3148 0.91 4.76 0.9638 1.5854 5.1155 63 

Clay (%) 1.32 22.9100 21.93 54.21 11.7444 0.2715 2.6786 63 

NO3 0.05 0.6995 0.33 4.72 0.9389 2.6163 9.7011 63 
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CaCO3 (%) 0.01 0.7803 0.72 2.05 0.5285 0.5275 2.4241 63 

pH (H20) 5.41 7.3182 7.50 8.57 0.7760 -1.0270 3.2552 63 

pH (CaCl2) 4.67 6.4619 6.47 7.71 0.7167 -0.6402 3.1820 63 

pH (KCl) 4.05 6.0348 6.05 7.31 0.7929 -0.7093 2.9159 63 

 
Figure 2-43. Boxplots of the measured soil properties for Serbia 
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Figure 2-44. Histogram of soil classes of the soil samples of Serbia 

 
Figure 2-45. The standardized reflectance spectra of Serbia (mean ± standard deviation) 
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2.1.4.9. Turkey 

 
Figure 2-46. Location of the soil samples of Turkey 

 
Table 2-9. Major statistical moments of the measured soil properties of Turkey 

Property Min Mean Median Max SD Skew Kurtosis N 

OM (%) 0.00 1.4545 1.26 5.09 1.13 1.002 0.735 94 

Sand (%) 11.95 48.9943 50.57 86.20 19.64 -0.006 -1.122 98 

Silt (%) 2.09 21.4671 19.90 47.78 9.10 0.881 0.502 98 

Clay (%) 5.07 29.5386 25.78 76.46 15.98 0.644 -0.252 98 

CaCO3(%) 0.58 21.2726 18.48 89.99 17.86 1.568 2.989 100 

pH (H20) 5.75 8.1471 8.17 9.76 0.58 -0.722 2.917 100 

EC (μS) 0.02 1.6778 1.42 9.86 1.16 4.259 28.309 100 
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Figure 2-47. Boxplots of the measured soil properties for Turkey 

 
Figure 2-48. Distribution of soil texture class across all soil samples for Turkey 
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Figure 2-49. Histogram of soil classes of the soil samples of Turkey 

 
Figure 2-50. The standardized reflectance spectra of Turkey (mean ± standard deviation) 
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2.1.5. Integration with the DataHub 

During the project meeting in Limassol, in addition to the soil sampling protocol given 
to all participants in this pilot activity, a template was decided and agreed upon w.r.t to 
the format of the file storing the soil spectral libraries. For each of the countries 
participating in the pilot, a Comma Separated Value (CSV) file was prepared, containing 
the same header names. The metadata for each sample are (bold letters denote the 
header name in the CSV file): 

 Sample ID; a 15-character unique identifier of the format XX-YY-ZZZ-WWWWW, 
with: 

o XX being the country code 
o YY being the soil sample’s class in WRB 
o ZZZ being the depth from which the sample was collected 
o WWWWW a unique id number for each sample – this number is zero-

padded to ensure 5 characters exist for each sample 

 GPS coordinated (Latitude / Longitude), Elevation (in meters), Depth of sample 
(in centimetres), Sampling_date 

 Soil class in WRB and potentially in USDA (Soil_type_WRB, Soil_type_USDA) 

 The climate of the area using the Köppen climate classification 
(Climate_Koeppen) 

 Physical and chemical properties as follows: OM, CaCO3, Sand_Fraction, 
Silt_Fraction, Clay_Fraction, NO3, EC 

 Standardized reflectance spectra (X350-X2500) 

 To assist and enable future researchers to use the GEO-CRADLE SSL, the resulting 
datasets were uploaded in the datahub in the following way: 

 Per-country CSV files, where for each country its corresponding SSL as developed 
in the GEO-CRADLE project is contained; and 

 A CSV file containing the complete GEO-CRADLE SSL (i.e. all the per-country csv 
files combined).  

All the above may be found in the regional datahub at the following page (Figure 2-51): 

http://datahub.geocradle.eu/dataset/regional-soil-spectral-library 

http://datahub.geocradle.eu/dataset/regional-soil-spectral-library
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Figure 2-51. The main page of the datahub concerning the GEO-CRADLE SSL 

 

2.1.6. Overview of the regional soil spectral library 

The regional SSL consists of a grand total of 1754 soil samples with standardized 
reflectance spectra, their analytical measurements for their physical and chemical 
properties, and their associated metadata. All samples do not have the same properties 
measured; therefore, there exists some inherent sparsity in the data. This is 
demonstrated in Table 2-10, which depicts for each soil property the number of samples 
analysed per each country. The most predominant ones are the soil texture and SOM, 
both equally important for agriculture and the management of water extremes.  

This regional SSL was developed in a region of the world that was underrepresented in 
other contemporary SSLs. In particular, taking into consideration the closed Global SSL, 
and the open LUCAS SSL, the former covers very sparsely the region while the latter 
covers only Greece (Figure 2-52). In terms of absolute numbers, the impact of this SSL is 
to increase by roughly 400% the openly available soil spectra data for the region. 
Moreover, because this SSL was built using a standardization protocol, it is readily 
expandable and research organizations from the region may easily contribute to this 
database. 

Notch boxplots of the soil properties may be found in Figure 2-53. This Figure suggests 
that there is large diversity among the soils contained in the SSL, allowing models to be 
developed which can adequately generalize. A pairwise correlation plot among all 
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physical and chemical soil properties present in the SSL is presented in Figure 2-54 which 
can be used to draw a first-order quality control of the data against pedological criteria, 
although given the sparsity of the data it is precarious to extrapolate further. In 
particular, within the SSL there are soils with different texture and of different soil type 
(Figure 2-56). A great variety of climatic, topographical and geological conditions, 
together with the diverse anthropogenic influences has resulted in a diverse soil cover 
in the RoI. A testament to this is that the samples represent 18 out of the 32 reference 
soil groups of WRB. The most predominant soil classes are (in decreasing frequency): a) 
the Fluvisols, b) the Leptosols, c) the Cambisols, d) the Luvisols, e) the Vertisols, and f) 
the Arenosols. This is in compliance with the most prominent soil classes which can be 
found in the region. The textural classes are also well represented (Figure 2-55), albeit 
no pure Silt samples exist, and there exists a slight trend towards sandy soils (because 
of the large presence of Sandy soils from Greece). 

As far as the spectral signatures are concerned (Figure 2-57), indicate a large soil 
mineralogical variation in the SSL because of the diverse soil-forming environments of 
the sample sites. Moreover, the near infra-red region exhibits well-defined absorption 
features close to 1414 and 1915 nm, which are assigned to OH-soil hygroscopic water in 
clay minerals. The main spectral differences may be ascribed to absorption bands in the 
visual range related to iron oxides, and SOM or carbon. 

 
Figure 2-52. Comparison of the samples' location with the Global SSL and the LUCAS SSL 
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Figure 2-53. Boxplot of all soil properties per each country in the GEO-CRADLE SSL 
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Table 2-10. Overview of the analysed samples in the regional SSL per country 

Country Samples OM Texture CaCO3 pH NO3 EC CEC 

Albania 107 107 107 0 0 0 0 0 

Bulgaria 105 105 105 0 105 0 0 105 

Cyprus 96 96 94 96 96 0 93 0 

Egypt 10 6 0 4 6 0 6 0 

FYROM 124 124 124 0 124 0 0 0 

Greece 928 928 928 928 0 928 0 0 

Israel 221 113 168 169 136 0 141 0 

Serbia 63 63 63 63 63 63 0 0 

Turkey 100 94 98 100 100 0 100 0 

All 1754 1636 1687 1360 630 991 340 105 
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Figure 2-54. Pair-wise correlation plot of the soil properties within the GEO-CRADLE SSL   
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Figure 2-55. The soil textural class distribution for all the samples in the GEO-CRADLE SSL 
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Figure 2-56. Histogram of soil classes of the soil samples present in the GEO-CRADLE SSL
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Figure 2-57. Spectral signatures of the soil samples in the GEO-CRADLE SSL (mean ± standard deviation)
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2.2. Implementation of the myDEWETRA platform 

2.2.1. The myDEWETRA platform 

The MyDEWETRA platform implementation in the IFS-WEM pilot intends to support the 
main issue of the same pilot; that is, to improve agricultural management and assist the 
decision process providing efficient instruments for water extreme management. 

On this line, MyDEWETRA makes in action a collection, systematization, and 
visualization of various kinds of heterogenous data and model outputs, either 
automatically or manually recorded, in the MyDEWETRA GEO server, allowing their 
combination and display on the same web based interface producing added value.  

Two levels of MyDEWETRA implementation are carried out for the IFS-WEM pilot. 

The first level is a Regional scale implementation proposed for the entire ROI. It contains 
a set of open source data, which form the minimum dataset to perform demonstrative 
predictions of risk of flooding and drought scenarios. 

In particular, the data available on MyDEWETRA are related to the weather forecast 
model outputs global scale (e.g. GFS), land use/land cover maps, satellite based rainfall 
observation (e.g. GPM, TRMM), global scale flood risk hazard (e.g. GAR2015 hazard 
maps) and global scale drought index (SPI, SPEI). 

The second level of MyDEWETRA implementation is centered on the Basin scale. The 
area selected as "test-case" has been the Drin-Buna river basin in Albania (sse Section 
2.5).  

All data on MyDEWETRA are accessible through the platform and the GEO-CRADLE Data 
HUB. 

2.2.2. Data infrastructure of MyDEWETRA platform 

MyDEWETRA is a web-portal of the Italian Civil Protection Department developed by 
CIMA Research Foundation based on the existing Dewetra platform, which consists of 
an integrated real-time system for hydro-meteorological and wildfire risk forecasting, 
monitoring and prevention based on the rapid availability of geospatial data among 
multiple relevant institutional stakeholders. It improves the accessibility and 
comparability of hazard, exposure and risk information and data at multiple levels.  

The platform MyDEWETRA is a web-portal aimed at data visualization from different 
sources, ensuring interoperability with already existing webservices, and complying with 
main relevant international standards. As a web-portal, it provides access possibly to 
several applications that can be easily extended. In other words, it provides interfaces 
for both human-to-machine as well as machine-to-machine communication. 
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One of the main issues of MyDEWETRA platform is to allow to the data from forecast 
models, remote and ground observations to be integrated with data from the territorial 
elements (exposures) as well as data from operators and citizens to analyse the situation 
in real time and deferred time to foresee possible future scenarios. 

The main application is Dewetra (current version 2.0), a web-GIS platform aimed at 
multi-risk mapping and hydrological forecasting and monitoring; it is an integrated 
system for real-time monitoring, prediction and prevention of natural disasters 
worldwide. Owned by the Italian Department of Civil Protection, the system has been 
developed by CIMA Research Foundation with Open Source technologies. It is compliant 
with the most common and widespread European and International standards, and this 
portal is currently developed only for the management of static information.  

Since 2012, Dewetra is promoted by the Commission of Hydrology of the World 
Meteorological Organization as a system for improving flood forecasting and warning. 

One of the key requirements for facilitating data sharing in a national or regional context 
is to provide solutions that ensure accessibility to information without the physical 
transfer from data owners/producers. 

The portal has been developed using Open Source technologies and following the OGC 
and Inspire standard for the sharing of data. The highest-level architecture based on the 
latest technologies can be represented by the scheme reported in Figure 2-58Error! 
Reference source not found.. 

The server side uses components written in Java and Python language. The services are 
exposed as APIs Rest and provide the functionality to navigate the application and access 
the data. On the client side are used HTML 5.0, Angular JS and Bootstrap to allow the 
user to interact with the REST services of the Server. On the server side, one of the most 
interesting features is the management of the push messages sent by the server to 
connect clients: that virtually cancel the latency between the time when the data are 
available in MyDEWETRA and when can be displayed on the client side (Figure 2-59). 
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Figure 2-58. MyDEWETRA Portal Schema. 

 
Figure 2-59. MyDEWETRA System architecture. 

The share of data and information among institutions and agencies can be achieved with 
different configurations of data infrastructures following several data sharing policies 
(Figure 2-60Error! Reference source not found.). With a centralized infrastructure, data 
are physically transferred to a central data server where MyDEWETRA platform is 
installed, to allow the visualization of data and products to end-users. The physical 
transfer of data can be a barrier for an effective data sharing policy, because institutions 
are much more inclined to allow a regulated access to data rather than transfer them. A 
distributed data infrastructure is based on the principle of accessibility to data and 
products (INSPIRE Directive): data owners and/or producers store, update and ensure 
accessibility to data without physically transferring them to third parts. In a distributed 
infrastructure, MyDEWETRA is composed by several nodes (DEWETRA Data Servers - 
DDS) installed in each institution; the portal allows end-users to visualize and process 
data in a unique environment. 

Due to the few amounts of data provided by the partners, it has been decided to realize 
a centralized infrastructure version of MyDEWETRA for the WP4.2. 
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Figure 2-60. MyDEWETRA centralized and decentralized data infrastructure. 

2.2.3. Content of MyDEWETRA 

MyDEWETRA has two main components: 
1. MyDEWETRA web application 
2. MyDEWETRA data server  
The web application is the core component of the system and ensures the accessibility 
to real time data and maps. In the case of the MyDEWETRA decentralized data 
infrastructure, the data servers are installed in each institution that is engaged in sharing 
data among the network. In this case the data servers used is provided from CIMA.  
 
End users can access the web application from any personal computer connected to the 
Internet: to access the platform users may visit the url: 

http://geocradle.mydewetra.org 

and then press "Free Entrance". Figure 2-61 shows a screenshot of the main page (panel 
A) as currently structured, with the application logo that stands as the background and 
the credits of the same reported in Italian and English. On the top of the main page the 
link to the MANUAL of MyDEWETRA is available together with a brief description of 
GEO-CRADLE project (DESCRIPTION-panel B), the objectives (OBJECTIVES-panel C) and 
the involved partners (TEAM- panel C). 

Once the access through the button "FREE ENTRANCE" is accomplished, the user is in 
the "DASHBOARD" (Figure 2-62) which provides a quick check of some of the data 
available in Dewetra 2.0. More precisely, the dashboard shows some snapshots on the 
two main categories of data treated into WP4.2, i.e. Floods and Drought: 
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- in the first row are visualized 4 panels which show the GAR 2015 - Flood Hazard Maps 
on two different area of interest: two are centred on the Balkans region and two on the 
MENA and all 4 show hazard maps are referred to return periods t=50 and 100 years; 

- in the second row are visualized 4 panels which refer to Standardized Precipitation 
Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) with two 
different accumulation periods (6 and 12 months). 

 
Figure 2-61. MyDEWETRA main access page and the informative public section. 

From the"DASHBOARD" (Figure 2-62), to enter Dewetra 2.0 users have two possibilities. 
They may click either: 
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1) on the icon  in the displayed widgets regarding some of the available Dewetra 2.0 
layers (e.g., FLOODS or DROUGHT maps) 

2) on the icon  in the sidebar - upper left of the screen. 

The Web-GIS platform included into MyDEWETRA uptakes all the functionalities of 
Dewetra involved with the static themes, geospatial layers are classified in compliancy 
with INSPIRE Directive and EU Floods Directive. The interface has been specifically 
designed to enhance navigation and research of information.  

 
Figure 2-62. MyDEWETRA DASHBOARD with widgets representing some of the FLOODS and 

DROUGHT maps available in DEWETRA 2.0 

2.2.4. MyDEWETRA User Interface 

Dewetra 2.0 is the evolution of the former integrated system Dewetra, operational at 
the Central Functional Centre of the National Civil Protection Department (DPC) /o 
Prime Minister's Office since 2008, for the forecasting, monitoring and real-time 
surveillance of all the environmental risks. The application provides, through a graphical 
interface, high-resolution and continuously updated information, allowing the user to 
monitor -for example- weather events, to build detailed risk scenarios and evaluate the 
potential impact of the phenomena on communities and infrastructure. 

One time the user clicks on the icon "W" on the orange background in the sidebar-upper 
left of the screen, the Control Map is opened. The Control Map is instantiated as the 
system is started, using the Google Hybrid map provided by Google-Maps services as the 
background layer. The Control Map is one of the components of the User Interface 
together with: 

 Toolbar 

 Display 

http://www.protezionecivile.it/
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 Layer List 

 Additional Tools 
as shown below in Figure 2-63. 

 
Figure 2-63. MyDEWETRA User Interface 

Data are generally organized into three main categories: observations, forecast models 
and static layers. Each category is further structured in tags (a thematic classification, 
i.e. rain, thunderstorms, soil moisture etc.) and/or folders (by means of which the data 
are stored separately depending on their source: radar, satellite, weather stations etc.). 

 
Figure 2-64. Control Map and Toolbar action buttons 
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On the top of the Control Map, the Toolbar (Figure 2-64) contains the following action 
buttons: 

 Observations: is the section dedicated to observational data and diagnostic models 
related to a time series. The data in this section can come from weather station, radar, 
satellite imagery but also webcams and radio gps. This data can be represented in their 
native resolution, but it also possible some elaboration to make the information more 
useful for an observer. 

 Forecast Models: lists all the available outputs from forecast systems (numerical 
weather prediction models, hydrological models, landslide susceptibility models, fire 
models, etc.); 

 Static Layers: provides all the information needed to design a comprehensive risk 
scenario such as the exposures or the hazard maps. Static Layer are made of data from 
the territory collected to know as many useful information from the territory as possible. 
They are defined “static” because they don’t change frequently in time but need only to 
be checked and updated sometimes. 

 Tools: enables some ancillary functions such as Export, and Report Scenarios 

 Search: is the tool allowing the users to search for any element visualized by the 
platform such as weather stations, toponyms, etc. 

 Notifications: this area is dedicated to display the messages delivered by other users 
of the portal. 
In the next pages are reported in detail the data implemented in the sections named 
Observations, Forecast Models and Static Layers in the GEO-CRADLE MyDEWETRA 
release. 
 
Every time a layer is pulled on, the application displays it on the Control Map and the 
Layer List (top left of the screen- Figure 2-65) allowing the user to visualize 

- name of the layer 
- layer description 
- reference date 
- initialization time of the run (if the chosen layer is a model's output) 
- Spatial aggregation (if enabled) 

 
Figure 2-65. Layer lists example 

Users are enabled to manage the layer they pulled on by selecting one of the buttons 
available on the layer list: 
•    Turn on / Turn off visualizes / deletes a previously loaded layer  
•    Zoom to Layer allows the user to bring the zoom back to the default level for 

that layer 
•    Legend displays the pop-up window showing the legend for the selected layer 
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•     Scroll offers the user the option to display a set of successive time steps of a 
given variable within the time range set in the Display) 

•     Expand allows displaying the buttons that activate some additional functions 
such as: 

 the slider adjusts the transparency / opacity of each layer 
 the download button saves to user's own disk any chosen layer, in many formats 
 the refresh button updates the layer, by loading the latest version from the 

available 
 the metadata button that allows the user to view/download the metadata file 

associated to the layer 

2.2.4.1. Observed data in MyDEWETRA platform 

The first action button of the Toolbar is the Observations menu, which provides access 
to all the observational datasets to the user. Once the user clicks on the menu, two 
different views are offered; namely, the Tag and Folder mode.  

In the framework of the WP4.2, the Tag mode in the release of MyDEWETRA shows the 
following observational data (Figure 2-66. Open observation data available in 
MyDEWETRAFigure 2-66) as organized by thematic criteria: 

 RAINFALL 

 SOIL SAMPLES 

 CLOUD COVER 

 DROUGHT 

In the table below the layers of this category are shown according to the assigned tags. 

Table 2-11. List of observed data layers available in the MyDEWETRA platform 

TAG LAYER NAME  SOURCE 

RAINFALL GSMaP NASA-JAXA 

IMERG 3h ACC. GPM 

PR OBS 5 -H05 (HSAF) Italian Civil Protection Department 
(HSAF)  

SOIL SAMPLES SOIL ANALYSIS GEO-CRADLE partners 

CLOUD COVER MSG IR 10.8 Italian Civil Protection 
Department 

DROUGHT SPI_IRI_3M U. S. Climate Prediction Center 
(U. S. Climate Prediction Center 

Gauge - OLR Blended daily 
precipitation analysis) 

SPI_IRI_6M 

SPI_IRI_9M 

SPI_IRI_12M 
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SPEI_3M Instituto Pirenaico de Ecología and 
Estación Experimental de Aula Dei 
—Zaragoza, Spain  

SPEI_6M 

SPEI_9M 

SPEI_12M 

 

 
Figure 2-66. Open observation data available in MyDEWETRA 

Every time a layer is pulled on, the application uploads it in the Control Map. If the cursor 
is left on the name of the layer in the Layer List (top left of the screen) the user enables 
the tooltip function to open two windows: 
 the first one at the top right of the screen (Figure 2-67 - panel B) which shows the 

metadata of the layers, such as: 
- the name of the layer 
- the Layer description 
- the reference date 
- the initialization time of the run (if the selected layer is a model's output) 
- the Spatial aggregation (if enabled) 
- the validity interval (if it is a combined variable) 

 the second one is placed immediately to the right of the Layer List (Figure 2-67 - 
panel A) and shows the name of the layer, the date of initialization of the run (if the 
case) and/or the reference date. 

In the given example in Figure 2-67, the tooltip displays the available information about 
one of the available SPI maps.  
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Figure 2-67. Example of one of the observational data available: 3-Month Standardized 
Precipitation Index (SPI_IRI_3M) is plotted together with the administrative limits for Balkans 
and MENA regions 

SOIL SAMPLES 

The results of the analysis realized on the data collected by the soil samples in the 
Balkans and the MENA regions described in detail in 2.1 have been implemented in the 
section Observations- Soil Samples under the name Soil Analysis (Figure 2-68 – panel 
A). 

Clicking on Soil Analysis, a default set (dot points in Figure 2-68 – panel B) of the soil 
samples appear on the Control Map. If the user moves the cursor on the left on the 
name of the layer (Figure 2-68 – label B1) in the Layer List, a panel with the metadata 
(Layer name, Depth [cm], Variable, Date) of the visualized default data appears (Figure 
2-68Error! Reference source not found. – label B2).  

If the user moves the cursor on one of the default dots (red cross Figure 2-68 -  panel C) 
visualized on the Control Map, on the upper right corner a panel appears with these 
information (Figure 2-68 -  label C1): 

 Date: the date of the soil sample; 

 Elevation [m]: elevation at which the soil sample has done; 

 Depth [cm]: depth at which the soil sample has done; 

 USDA: USDA soil taxonomy developed by United States Department of 
Agriculture and the National Cooperative Soil Survey provides an elaborate 
classification of soil types 

 WRB: World Reference Base classification system for naming soils (Figure 2-68) 

 CLIMATE: Köppen climate classification of the soil sample 

 Country: country of the Roi where the soil sample has done  

 Region: region of the Roi where the soil sample has done (Balkans or MENA) 

 OM [%]: organic matter concentration in the soil sample (Figure 2-68). 
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Clicking on one of the default dots, two new panels are available: 
- The first panel contains the soil spectrum graph of the selected sample (Figure 

2-68 -  panel D); 
- The second panel contains the results obtained by the chemical analysis (Figure 

2-68 -  panel E) made on the selected sample. 

The data in these two panels can be downloaded by the user using appropriate buttons 
(Figure 2-68 -  labels D1 and E1) 

 
Figure 2-68. Soil Analysis layer and visualization of the results of the soil sample analysis on 

MyDEWTRA 

To visualize all the other soil samples and the relative analysis, the user should move the 
cursor on the left on the name of the layer (Figure 2-68–label B1) in the Layer List and 
click on it.  

At that point, a new screen pops up (Figure 2-69 – panel B) and the user has the 
possibility to combine different properties and consequently the soil samples which fit 
all the properties selected.  

The properties on which makes different combinations are: 
- AREA OF INTEREST: the user can decide to visualize the soil sample at COUNTRY 

(Figure 2-69 --panel E) or REGION (Figure 2-69 - -panel D) level;  
- DEPTH [cm]: the user can visualize the soil samples at a specific level (Figure 2-69 

- -panel F): 
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[{surface}, {10 ÷20}, {20 ÷30}, {30 ÷40}, {40 ÷50}, {50 ÷60}, {60 ÷70}, {70 ÷80}, {80 
÷90}, {90 ÷100}, {100 ÷120}, {120 ÷140}, {140 ÷160}, {160 ÷180}, {180 ÷200}, 
{>200}]; 

- SOIL TAXONOMY: the user can visualize the soil samples by using the USDA 
(Figure 2-69 - -panel H) or WRB (Figure 2-69 - -panel I) soil classification; 

- VARIABLE: the user can visualize one of these variables for each sample (Figure 
2-69 - -panel L): 

 Calcium Carbonate (CaCo3); 
 organic matter (OM); 
 Sand fraction; 
 Silt fraction; 
 pH (H20). 

- DATE: list of the date of the available soil samples that satisfy all the properties 
selected in the fields above;  

A Dynamic Palette is at disposition of the user that can ranging the range on which to 
visualize the specific variable choice using personal values. 

When the user makes all the choices on the pop-up screen (Figure 2-70 – panel A), on 
the Control Map will be visualized the dots of soil samples that satisfy all the properties 
selected. If the user moves the cursor on one of the dots visualized (Figure 2-74- yellow 
arrow in panel B), a panel appears with these information on the upper right corner: 

 Name of the sample 

 Date: the date of the soil sample; 

 Elevation [m]: elevation at which the soil sample has done; 

 Depth [cm]: depth at which the soil sample has done; 

 USDA: USDA soil taxonomy developed by United States Department of 
Agriculture and the National Cooperative Soil Survey provides an elaborate 
classification of soil types 

 WRB: World Reference Base classification system for naming soils (Error! 
Reference source not found.) 

 CLIMATE: Köppen climate classification of the soil sample 

 Country: country of the Roi where the soil sample has done  

 Region: region of the Roi where the soil sample has done (Balkans or MENA) 

 Value of the selected variable. 

In panel B and C of Figure 2-74, the yellow arrows indicated to different samples 
obtained from the selection done in the pop-up screen (Figure 2-70 – panel A): the two 
dotes indicated in this example show different color. This is motivated by the different 
value of sand fraction corresponding to the samples: the two yellow circles indicate 28% 
and 61% respectively.   

Clicking on one of the dots, the two panels reporting the soil spectrum graph and the 
results obtained by the chemical analysis made on the selected sample are available to 
the user. 
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Figure 2-69. Soil Analysis layer -visualization of the steps to select the available soil samples in 

the RoI with specific properties. 

 
Figure 2-70. Soil Analysis layer -visualization of data samples available after executing the 

selection of the properties in the pop-up screen.  
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DROUGHT 

Droughts are one of the two main thematic area of the WP4.2 together with Floods. On 
this line, two different indices have been implemented and now are available on 
MyDEWETRA.  

During the “Inter-Regional Workshop on Indices and Early Warning Systems for Drought” 
happened at the University of Nebraska-Lincoln in December 2009, the drought indices 
in use around the world were reviewed to support the explanation of agricultural and 
hydrological droughts and was discussed the need of standard indices for describing 
different types of droughts. It was recognized the importance of drought monitoring and 
dissemination of early warning systems information, encouraging countries that have 
not already done, to take the first steps in implementing such a process.  

The idea to make available some indices on MyDEWETRA platform goes in this direction: 
to provide a system to allow coordination between data monitoring agencies and to 
facilitate effective decision making. During the Workshop it was also recognized the 
importance of the use of the Standardized Precipitation Index (SPI) to characterize the 
meteorological droughts around the world. Anyway, concerns have been raised in the 
scientific community about the utility of the SPI as a measure of changes in drought 
associated with climate change, as it does not deal with changes in evapotranspiration. 
Thus, an alternative index that deals with evapotranspiration has been proposed, such 
as the Standardized Precipitation Evapotranspiration Index (SPEI).  

On the base of these considerations, SPI and SPEI have been make available on 
MyDEWETRA under the section Observation (Figure 2-71). 

 
Figure 2-71. Observation section- Drought layer: SPEI and SPI on different accumulation time 

(3, 6, 9, 12 months) are available. 
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The Standardized Precipitation Index (SPI)1 is a widely used to characterize 
meteorological drought on a range of timescales. On short timescales, the SPI is closely 
related to soil moisture, while at longer timescales, the SPI can be related to 
groundwater and reservoir storage. The SPI can be compared across regions with 
markedly different climates. From literature arisen that the raw precipitation data are 
typically fitted to a gamma or a Pearson Type III distribution, and then transformed to a 
normal distribution. The SPI values can be interpreted as the number of standard 
deviations by which the observed anomaly deviates from the long-term mean. The SPI 
can be created for differing periods of 1-to-36 months, using monthly input data.  

In the contest of WP4.2 topic, analyses of observed precipitation conditions using 
monthly SPI are provided on MyDEWETRA. These analyses are realized by the 
International Research Institute (IRI) in collaboration with the NOAA Climate Prediction 
Center (CPC) and the University of Maine. The SPI values are generated using monthly 
precipitation totals at 1.0° lat/lon resolution calculated from a dataset that combines 
the retrospective and real-time CPC Gauge - OLR Blended (GOB) daily precipitation 
analysis for the globe, accumulated to monthly. The maps available on MyDEWETRA 
show values of the monthly SPI for 4 accumulation periods (3, 6, 9, or 12-month - Figure 
2-72) over the globe. The maps provide an indication of short-term to longer-term wet 
(green, positive SPI) or dry (yellow to red, negative SPI) conditions based upon 
precipitation alone. The negative half of the color scale uses the same colors and 
thresholds of SPI corresponding to the percentiles associated with the D0 (30%tile) to 
D4 (2%tile) drought intensity categories used in the U. S. Drought Monitor2.  

 

                                                      
1 Keyantash, John & National Center for Atmospheric Research Staff (Eds). Last modified 08 Mar 2018. "The Climate Data Guide: 

Standardized Precipitation Index (SPI)." Retrieved from https://climatedataguide.ucar.edu/climate-data/standardized-
precipitation-index-spi. 
2 The U.S. Drought Monitor maps provides a summary of drought conditions across the United States and Puerto Rico and are 

updated weekly by combining a variety of data-based drought indices and indicators and local expert input into a single composite 
drought indicator. Ranging from D1 - D4, the map denotes four levels of drought intensity and one level of "abnormal dryness" (D0). 
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Figure 2-72. Observation section- Drought layer: SPI at accumulation time 3 (panel A), 6 (panel 

B), 9 (panel C), 12(panel D) months. 

The Standardized Precipitation Evapotranspiration Index (SPEI)3 is an extension of the 
widely used SPI. It considers both precipitation and potential evapotranspiration (PET) 
in determining drought. Thus, unlike the SPI, the SPEI captures the main impact of 
increased temperatures on water demand. Like the SPI, the SPEI can be calculated on a 
range of timescales from 1-48 months.  

In the contest of WP4.2 topic, The Global SPEI database4, SPEIbase, are provided on 
MyDEWETRA. The SPEIbase is based on monthly precipitation and potential 
evapotranspiration from the Climatic Research Unit of the University of East Anglia. 
Currently the version 3.23 of the CRU TS dataset has been used. It is usually updated as 
soon as new data becomes available. The data set offers long-time about drought 
conditions at the global scale, with a 0.5 degrees spatial resolution and a monthly time 
resolution. It has a multi-scale character, providing SPEI time-scales between 1 and 48 
months. Currently it covers the period between January 1901 and December 2018 and 
the time range available on MyDEWETRA is from September 2005 up to February 2018 
(Figure 2-84).   

The SPEIbase consists of standardized values over the emerged land pixels. No land 
pixels are assigned a value of 1.0x1030. In some rare cases it was not possible to achieve 
a good fit to the log-logistic distribution, resulting in a NAN (not a number) value in the 
database. The SPEIbase is based on the FAO-56 Penman-Monteith estimation of 
potential evapotranspiration. This is a major difference with respect to the SPEI Global 

                                                      
3 Vicente-Serrano, Sergio M. & National Center for Atmospheric Research Staff (Eds). Last modified 18 Jul 2015. "The Climate Data 

Guide: Standardized Precipitation Evapotranspiration Index (SPEI)." Retrieved from https://climatedataguide.ucar.edu/climate-
data/standardized-precipitation-evapotranspiration-index-spei. 
4 http://spei.csic.es/database.html 
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Drought Monitor, that uses the Thornthwaite PET estimation. The Penman-Montheith 
method is considered a superior method, so the SPEIbase is recommended for most uses 
including long-term climatological analysis. 

 

 
Figure 2-73. Observation section- Drought layer: SPEI at accumulation time 3 (panel A) , 6 

(panel B), 9(panel C), 12(panel D) months. 

For sake of clarity, both SPI and SPEI maps are implemented to the global scale to allow 
them to be used by any user who will learn about the presence of this platform through 
the GEO-CRADLE DATA HUB and not only from the GEO-CRADLE partners or some 
national agencies, end-users or SME in the RoI. 

2.2.4.2. Forecast models in the MyDEWETRA platform 

The second action button of the Toolbar is the Forecast menu, which provides access to 
all the forecast models to the user. Once the user clicks on the menu, two different views 
are offered: the Tag and Folder mode.  

In version of MyDEWETRA for the GEO-CRADLE project (Figure 2-74), the Tag mode 
shows the following observational data as organized by thematic criteria 

 HYDROLOGICAL MODELS 

 METEOROLOGICAL MODELS 

 FIRE MODELS 

In the table below the layers of this category are shown according to the assigned tags. 
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Table 2-12. List of forecast models available in the MyDEWETRA platform 

TAG LAYER NAME  SOURCE 

HYDROLOGICAL 
MODELS 

ISRAEL DETERMINISTIC HYDRO MODEL - 
WRF 

Israeli 
Hydrological 
ServiceWater 

Authority 

FLOOD PROOFS ALBANIA – PROBABILISTIC 
LAMI 

CIMA 

FLOOD PROOFS ALBANIA – 
DETERMINISTIC LAMI 

CIMA 

METEOROLOGICAL 
MODELS 

GFS 0.5° NOAA 

FIRE MODELS RISICO WORLD  CIMA 

FDI MONDO 
(RISICO_WORLD) 

CIMA 

 

 

Figure 2-74. Open modelling data available in MyDEWETRA 

Every time a layer is pulled on, the application uploads it in the Control Map. If the cursor 
is left on the name of the layer in the Layer List (top left of the screen) the user enables 
the tooltip function to open two windows: 

http://geocradle.mydewetra.org/wiki/index.php/Israel_Deterministic_Hydro_Model_-_WRF
http://geocradle.mydewetra.org/wiki/index.php/Israel_Deterministic_Hydro_Model_-_WRF
http://geocradle.mydewetra.org/wiki/index.php/GFS_0.5%C2%B0
http://geocradle.mydewetra.org/wiki/index.php/RISICO_WORLD
http://geocradle.mydewetra.org/wiki/index.php/FDI_MONDO_(RISICO_WORLD)
http://geocradle.mydewetra.org/wiki/index.php/FDI_MONDO_(RISICO_WORLD)
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 the first one at the top right of the screen (Figure 2-75 - panel B) which shows the 
metadata of the layers, such as: 
- the name of the layer 
- the Layer description 
- the reference date 
- the initialization time of the run (if the selected layer is a model's output) 
- the Spatial aggregation (if enabled) 
- the validity interval (if it is a combined variable) 

 the second one is placed immediately to the right of the Layer List (Figure 2-75- panel 
A) and shows the name of the layer, the date of initialization of the run (if the case) 
and/or the reference date. 

In the given example in Figure 2-75, the tooltip displays the available information about 
one of the available variables (total precipitation) of the Global Model GFS 0.5°.  

 

Figure 2-75. Example of one of the observational data available: 3-Month Standardized 
Precipitation Index (SPI_IRI_3M) is plotted together with the administrative limits for Balkans 

and MENA regions. 

FIRE MODELS (International) 

Under the thematic area related to the Water Management, CIMA provides as 
contribution to the WP4.2 two of the main research products developed by its 
researchers in the topic of modelling and detection of fire: RISICO Word and Fire Danger 
Index (FDI). 
RISICO Word: the system RISICO provides (daily wildland fire risk forecast maps. The 
RISICO system has a complex software architecture based on a framework able to 
manage geospatial data as well as time dependent information (e.g., numerical weather 
prediction models, real time meteorological observations, and satellite data). Within the 
system semi-physical models, able to simulate in space and time the variability of the 
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fuel moisture content, are implemented. This parameter represents the main variable 
related with the ignition of a fire. Based on this information and introducing information 
on topography and wind field the model provides the rate of spread and the linear 
intensity of a potential fire generated by accidental or deliberate ignition. The model 
takes into account the vegetation patterns, in terms of fuel load and flammability.  

Territorial data used by the system are vegetation cover and topography. 
Meteorological data are mainly provided by numerical weather prediction models (GFS 
0.5°, in this case). Meteorological data provided in real time by a meteorological network 
are also used by the model as well as satellite data (e.g., vegetation index, snow cover). 
The output information is provided on a web-gis based system according with the OGC-
INSPIRE standard.  

The fine fuel moisture model is derived from the FFMC (Fine Fuel Moisture Code) of the 
CFFDRS (Canadian Forest Fire Danger Rating System). In addition, a different nominal 
rate of spread (no-wind on flat terrain) has been introduced for each different class of 
vegetation. The operational chain of the RISICO system runs every 3 hours making use 
of the available observations at each time step.  

The system RISICO is able to integrate the main Fire Hazard Indexes present in literature 
providing a suitable tool for testing the different indexes on the same platform in many 
environmental and climatic conditions.  

RISICO represents an operational approach to forest fires management both during the 
prevention and firefighting phases. Prevention phase is mainly devoted to early warning: 
fire risk bulletins are issued by Civil Protection authorities and dispatched to all operative 
bodies employed both in firefighting and civil protection activities. During the 
firefighting activities RISICO supports decision makers to define the best strategies to 
cope with fires.  
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Figure 2-76. Example of some variables available from the daily run of RISICO Word: Fireline 
Intensity (panel A) and Fine Fuel Moisture Content (panel B)  

Fire Danger Index (FDI): is the mean of the 75th percentile of the propagation velocity 
(PPF) values computed by RISICO World. The index calculated on the 75th percentile 
highlights the persistence of conditions of severe danger in a 24-hour timespan on at 
least a quarter of the territory considered or alternatively on the whole territory 
considered limited to two tri-hour intervals. This index has been defined on the basis of 
the variable Rate of Spread (PPF) available among the variables provided by RISICO 
World, obtained as the product of the Rate of Spread (velocity of propagation) for the 
seasonal danger map (PPF Probability of Fire Propagation), appropriately normalized 
between 0 and 1. The FDI Mondo is computed using the meteorological input provided 
by the NWP GFS 0.5°.  
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Figure 2-77. Example of some variables available from the daily run of FDI: Fire Danger Index 
(panel A) and 90th Perc Mean Rate of Spread (PPF) (panel B). 

HYDROLOGICAL MODELS 

Under the thematic area related to the Water Management, the following hydrological 
model contribution is presented: 
 
Flood-PROOFS: CIMA provides as contribution to the WP4.2 one of the main research 
products developed by its researchers in the topic of operational floods forecasting 
named Flood-PROOFS. More precisely, it is available in MyDEWETRA a version 
implemented on the Drini-Buna basin in Albania. The data of runs that the users can 
visualize are referred to the period over which Soil Moisture and Clay Content Maps 
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available in the Toolbar named Static (Section 2.2.4.3) are derived from data fusion 
techniques involving Satellite Images and Soil Sampling data (see Section 2.5 for more 
details). The field campaign has been scheduled from 15/07/2017 to 4/08/2017 and 107 
samples were acquired for the creation of a regional soil spectral library. The 
hydrological runs from Flood-PROOFS model are from 15/07/2017 to 5/08/2017. 
 
The Flood-PROOFS layer available on MyDEWETRA is a customization for Albania of the 
Flood-PROOFS (Flood-PRObabilistic Operational Forecasting System) system designed 
for operational floods forecasting by CIMA. Flood-PROOFS supports decision makers 
through the forecast phase and furnishes a quantitative evaluation of ground effects in 
term of discharge and peak flow. It consists of the following elements: 

1. a precipitation downscaling module for the generation of fine-time-scale 
precipitation scenarios: RainFarm [21], [22] 

2. a fully distributed and continuous hydrological model: Continuum [23] 
 

RainFARM is a rainfall downscaling algorithm that can produce an ensemble of rainfall 
scenarios (10 in this precise case) that maintain some characteristics of the rainfall 
prediction derived by a meteorological model run; it can mimic the small-scale variability 
of precipitation needed to correctly force the hydrological model. The rainfall scenarios 
built with RainFARM are used to feed Continuum model which is a distributed 
hydrological model based on a geomorphologic approach and combines semi-empirical 
and physically based modules to describe the processes. It can work in a continuous 
way; all the main physical processes that compose the hydrological cycle are modelled.  

The hydrological forecast is carried out both in a deterministic and a probabilistic way. 
The deterministic module of the system uses as inputs for hydrological modelling the 
forecasts made by the COSMO-I7 limited area meteorological model. The probabilistic 
runs are based on the downscaling model of RainFarm precipitation. Since observations 
from ground-based meteorological sensors are not available, the Continuum 
hydrological model at the base of this system is fed exclusively with weather forecasts. 
Obviously, this increases the uncertainty of the hydrological forecast since it is not 
possible to estimate at best the current state of the basin (soil moisture, snow cover, 
etc.). 

Meteorological precipitation forecast (COSMO I-7) and the unpredictability of 
precipitation patterns at small space-time scales, are both considered. The system has a 
complex software architecture based on a framework able to manage geospatial data 
as well as time dependent information. In 2011, within the framework of the Italian 
Cooperation Program, the system has been implemented on the Drini-Buna basin in 
Albania. 

Flood-PROOFS provides flood forecasts for the Drin-Buna catchment. The basin 
response is modelled by a fully distributed hydrological model able to models also the 
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dams and the lake system. The basin is discretized on a regular grid of 300x300 meters. 
Static and dynamic input data feed the system: 

 Static: topographic (DEM), soil type, soil use and vegetation cover data (GIS) 

 Dynamic: meteorological forecast and observed data (if available), manoeuvres 
performed on the hydraulic structures (if available), satellite data (MODIS) 

The DRIN-Buna catchment extends from Northeast of Albania toward the centre on the 
West border of Albania. It covers areas from Montenegro, Kosovo to FYROM. The whole 
basin is about 17.000 km2, with five dams (Spilje, Komani, Mavrovo, Vau Dejes, Fierza 
dams) and two lakes (Skutari Lake and Ohrid Lake). Starting from the available 
Quantitative Precipitation Forecast, the main outputs produced by the computational 
chain Flood-PROOFS are two for each selected section. The discharge forecast is 
currently modelled for the critical hydraulic sections displayed in Error! Reference 
source not found. (panel A and B). 

Figure 2-78 shows an example of probabilistic and deterministic outputs. Panel E shows 
deterministic outputs while panel C and D show the probabilistic ones for the run on 
25/7/2017. The probabilistic output is composed by two graphs: the first one is the 
typical discharge time series (panel C) while in the second one the discharge is 
associated to its occurrence probability (panel D). 

 

Figure 2-78. DRINI and BUNA river basin with FloodPROOFS river sections on MyDEWETRA. 
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2.2.4.3. Static data in the MyDEWETRA platform 

The third action button of the Toolbar is the Static Layers menu, which provides access 
to all the time-independent data to the user. Once the user clicks on the menu, two 
different views are offered: the Tag and Folder mode.  

In version of MyDEWETRA for the GEO-CRADLE project (Figure 2-79) the Tag mode 
shows the following observational data as organized by thematic criteria 

 Administrative Units 

 Natural risk zones 

 Soil moisture 

 Clay Content 

 Drin Buna 

 Land Cover 

 Hydrography 

In the table below the layers of this category are shown according to the assigned tags. 

 

Table 2-13. List of static data available in the MyDEWETRA platform 

TAG LAYER NAME  SOURCE 

ADMINISTRATIVE 
UNITS 

BALKANS Gadm level 1 GADM 

MENA Gadm level 1 

HYDROGRAPHY Hydroshed USGS  

NATURAL RISK 
ZONES 

Balkans Flood hazard 100y GAR CIMA  

Balkans Flood hazard 50y GAR 

Balkans Flood hazard 25y GAR 

MENA Flood hazard 100y GAR 

MENA Flood hazard 50y GAR 

MENA Flood hazard 25y GAR 

SOIL MOISTURE Soil Moisture - Drin-Buna i-BEC 

CLAY CONTENT Clay Content - Drin-Buna  i-BEC 

DRIN BUNA Clay Content - Drin-Buna  i-BEC 

Soil Moisture - Drin-Buna 
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LAND COVER Corine Land Cover BG CLC 2012 

Imperviousness Degree BG GMES  

 

 

Figure 2-79. Open static data available in MyDEWETRA. 

Every time a layer is pulled on, the application uploads it in the Control Map. If the cursor 
is left on the name of the layer in the Layer List (top left of the screen) the user enables 
the tooltip function to open two windows: 
 the first one at the top right of the screen (Figure 2-80- panel A2 and B2) which shows 

the metadata of the layers, such as: 
- the name of the layer 
- the Layer description 
- the reference date 
- the initialization time of the run (if the selected layer is a model's output) 
- the Spatial aggregation (if enabled) 
- the validity interval (if it is a combined variable) 

 the second one is placed immediately to the right of the Layer List (Figure 2-80- panel 
A1 and B1) and shows the name of the layer, the date of initialization of the run (if 
the case) and/or the reference date. 

In the given example in Figure 2-80, the tooltip displays the available information about 
the Soil Moisture -Drin Buna (panel A) and the Clay Content (panel B) available among 
the Static layer.  
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Figure 2-80. Example of STATIC data available: Soil Moisture and Clay content maps on the 
Drin-Buna catchment. 

LAND COVER 

The presence of two maps under this section is driven by some of the main issues of the 
pilot oriented in supporting large scale agriculture monitoring, exploding existing EO 
data and collecting new data. Maps are provided by one of the partners of the project 
(Space research and technology institute -SRTI) with the intention of paving the road 
towards a regional cooperation and sharing data. 

In Figure 2-81 are reported the Corine Land cover 2012 (panel A-B) and Imperviousness 
Degree [%] (panel C-D). 

 

Figure 2-81. Example of values of CLC in Bulgaria. 
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2.3. Development of geo-statistical maps 

The regional SSL can be used to derive geo-statistical maps of selected soil properties. 
Assuming that a region has been properly sample (i.e. the soil samples cover the 
underlying pedodiversity present), geo-statistical maps can be generated through 
extrapolation based on the data. There are two groups of interpolation techniques: 
deterministic and geostatistical. All methods rely on the similarity of nearby sample 
points to create the surface. Deterministic techniques use mathematical functions for 
interpolation. Geostatistics relies on both statistical and mathematical methods, which 
can be used to create surfaces and assess the uncertainty of the predictions. The 
principal idea is that neighbouring points tend to have the same properties, and hence 
predictions can be made with high degree of accuracy. 

One common technique is Kriging (or Gaussian process regression) which is a method of 
interpolation for which the interpolated values are modelled by a Gaussian process 
governed by prior covariances. This is in contrast to other technique such as a piecewise-
polynomial spline chosen to optimize smoothness of the fitted values. Under suitable 
assumptions on the priors, kriging gives the best linear unbiased prediction of the 
intermediate values. Interpolating methods based on other criteria such as smoothness 
need not yield the most likely intermediate values. 

Due to the spatial data sparsity existing in the GEO-CRADLE SSL, there are only limited 
areas where this may be used successfully. One such area is the Nestos River Delta, in 
Northern Greece. A generated geo-statistical map of Organic Matter using Kriging is 
given in Figure 2-82. However, the underlying pre-requisite of geostatistics, that of the 
sufficient sampling, dictates the need for large datasets, which significantly drives up the 
cost of sampling and analyses. A faster, less costly alternative is to use Earth Observation 
data and the SSL which can produce more accurate results, even in areas that were not 
adequately sampled. This significantly improves the operational activities of the SSL, and 
the methodology is detailed in the following sections. 
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Figure 2-82. A generated map of OM in Northern Greece using geostatistical techniques 

 

2.4. Development of laboratory soil spectroscopy models 

The recorded diffuse reflectance spectra in the regional SSL cover the vis–NIR region. 
Many soil chemical components (chromophores) interact with the electromagnetic 
radiation within this region. Soil spectroscopy exploits the correlation between spectral 
features and chromophores in order to estimate soil variables. However, the vis-NIR 
region is largely nonspecific due to the significant overlapping absorption of soil 
constituents. In other words, it is very difficult to exactly assign a single wavelength only 
to one absorption band. When NIR electro-magnetic radiation interacts with a soil 
sample, it is the overtones and combinations of fundamental vibrations in the mid-
infrared (mid-IR) region that are detected. For example, bands in the NIR and SWIR may 
be ascribed to specific clay minerals (e.g. Kaolin doublets at 1415 nm, Smectite Al-OH at 
2230 nm). Overtones of the O–H and H–O–H stretch vibrations in the free water produce 
two deep absorption features at 1455 nm and 1915 nm, while organic matter has a 
strong relationship with electromagnetic radiation in the visible region [24]. However, 
generally, the NIR region is characterized by broad, superimposed, and weak vibrational 
modes, giving soil NIR spectra few, broad absorption features. Due to the broad and 
overlapping bands, vis–NIR spectra contain fewer absorptions than the mid-IR, and as a 
direct consequence can be more difficult to model. However, this region contains useful 
information on organic and inorganic materials in the soil as detailed above. This 
underlying information needs to be mathematically extracted from the spectra and 
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requires powerful and robust methodologies. In the subsections that follow, the 
multivariate calibration approaches considered during the realization of this task are 
described. 

 

2.4.1. Overview of the machine learning algorithms used 

2.4.1.1. Partial Least Squares Regression 

The Partial Least Squares Regression (PLSR) algorithm [25]–[28] is an extension of the 
simple Ordinary Least Squares (OLS) solution, and the Principal Components Regression 
(PCR) algorithm [29]. In the case of spectral data, the predictors (i.e. the recorded 
spectrum at each distinct wavelength) are highly correlated and outnumber the number 
of observations. In such cases, OLS fails to provide a robust solution, or even one 
solution at all. One simple solution is to calculate the pairwise correlations among the 
predictors and disregard the ones above a pre-specified threshold. This however, does 
not necessarily ensure that linear combinations of predictors are uncorrelated with 
other predictors. If this is the case, then the ordinary least squares solution will still be 
unstable. Therefore, this process does not guarantee a stable least squares solution. 
Another common solution in highly dimensional spaces is to apply the Principal 
Components algorithm on the predictors, which effectively transforms the input space 
into a new, more compact space (i.e. with fewer predictors). Each of the new predictors 
is a linear combination of the initial predictors; applying regression on this new input 
space is the PCR algorithm. Since PCA does not consider any aspects of the response 
when it selects its components and is only interested in covering the variability present 
in the predictor space, should this variability be uncorrelated to the variability of the 
response, then PCR will have difficulty identifying a predictive relationship when one 
might actually exist. 

The PLS algorithm solves the aforementioned predicaments by identifying underlying, 
termed latent, relationships among the predictors that are highly correlated with the 
response variable. PLS, like PCA, finds linear combinations of the predictors and are 
commonly called latent variables. While the PCA linear combinations are chosen to 
maximally summarize the predictor space variability (i.e. to compress the input space), 
the PLS linear combinations of predictors are chosen to maximally summarize the 
covariance with the response (i.e. to compress the input space in a direction favourable 
to the response). 

2.4.1.2. Cubist 

Cubist is a rule-based model that is an amalgamation of several methodologies that were 
published in their primordial phase [30], [31] but continued evolving as a form of a 
commercial package. In 2011, the source code was released under an open-source 
licence, where the full details of the current version were passed to the realm of public 
property. An R package was soon introduced, which was applied in vis-NIR spectroscopy 
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[4] with favourable results. A detailed description of the algorithm can be found in [32]. 
Briefly, the algorithm defines a tree, which can be reduced to a set of rules. Each branch 
defines the premise part of the rules and is used to split the data using one or more 
predictors, while the terminal leaves contain linear regression models (i.e. the 
consequent of each rule). Cubist can also use a boosting-like scheme which is termed 
committees. Here, iterative models are created by taking into account the predictions 
of the previous models. Additionally, Cubist can also adjust the predictions of the rule-
based model using known errors on the training set; when a prediction is made on a 
testing pattern, its nearest neighbours in the training set are identified and the 
prediction is corrected using their know errors. 

2.4.1.3. Support Vector Regression 

Support vector machine (SVM) analysis is a popular machine learning tool for 
classification and regression, was first identified by Vladimir N. Vapnik and Alexey Ya. 
Chervonenkis in 1963. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. 
Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick to 
maximum-margin hyperplanes [33]. A version of SVM for regression, termed Support 
Vector Machines for Regression, was proposed by Vapnik et al. in 1996 [34]. It is 
considered a nonparametric technique because it relies on kernel functions. A Gaussian 
radial basis function was used as a kernel function throughout this document. 

2.4.1.4. Elastic Net 

Elastic Net regularization [35] which is a general form of the ridge and lasso methods. In 
particular it uses both 𝜆1 and 𝜆2 penalties of the respective methods. Thus, the method 
extends the ordinary least squares method, by performing simultaneous regularization 
and variable selection. The tuning parameters are the 𝜆2 term and the fraction 𝑠 of the 
𝐿1-norm of the coefficient vector, relative to the norm at the full least squares solution. 

2.4.1.5. K-Nearest Neighbours (KNN) 

The weighted k-nearest neighbours (kNN) algorithm is a type of instance-based learning 
which in order to predict the output of a testing pattern uses its k nearest neighbours 
(defined using a distance metric) from the calibration set and calculates the prediction 
as the weighted average of the neighbours’ respective outputs 

 

2.4.2. Creating the calibration sets 

To validate the results of a model it is imperative to split the dataset into two disjoint 
sets. The first is termed calibration set and is used to calibrate the model. The second 
set is called validation and is used to validate the model – that is, when the outputs of 
the validation set are known they can be compared with the model’s prediction.   



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 89 

 

To establish these two sets, the widely used Kennard-Stone algorithm [36] was 
employed. The Kennard–Stone algorithm allows to select samples with a uniform 
distribution over the predictor space. It starts by selecting the pair of points that are the 
farthest apart using a pre-defined geometrical distance metric. This pair is assigned to 
the calibration set and removed from the list of points. Then, an iterative procedure 
commences which essentially adds the next sample which is the farthest apart from its 
closest neighbours in the calibration set. As far as the distance metric, the Mahalanobis 
distance in the PC space was used in our approach. 

 

2.4.3. Validation measures 

After the calibration of the models, they were used to predict the know properties 𝑦 of 
the validation sample. The model’s predictions  �̂� can then be compared with the know 
outputs. The following validation measures where used to assess the accuracy of the 
developed models: The root mean square error of prediction, calculated as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑖=𝑁

𝑖=1

𝑁
 

The coefficient of determination 𝑅2 which is the proportion of the variance in the 

dependent variable that is predictable from the independent variable, which is calculated 

as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑖=𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑖=𝑁
𝑖=1

 

The ratio of performance to the interquartile distance, which has been shown to be a 

more robust performance estimator, calculated thusly [37]: 

𝑅𝑃𝐼𝑄 =  
𝑄3 − 𝑄1

𝑅𝑀𝑆𝐸
 

where Q3 – Q1 denotes the difference between the 3rd and 1st quartiles of the measured 

variable. 

 

2.4.4. Pre-processing techniques 

Spectral pre-processing (or pre-treatments) refers to the application of a data 
transformation to the initial recorded spectra, in order to enhance significant features. 
These transformations can account for non-linearities, measurement errors, as well as 
sample variations and noisy spectra. As noted, the chemical composition of the soil 
sample has an effect on its reflectance spectrum. However, its structural properties also 
influence the spectrum by causing non-linear light scattering effects. More concretely, 
the particle size distribution (i.e. its texture) affects the degree of scattering. A coarser 
structure increases the scatter (and as such reduces reflection) and the apparent 
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absorbance increases as the path length increases. The pre-processing techniques aim 
to both enhance the more chemically significant peaks in the spectra as well as reduce 
unwanted effects such as baseline shifts and overall curvature. [38] 

The following pre-processing techniques were examined and applied to the recorded 
reflectance spectra (Figure 2-83): 

 The pseudo-absorbance transformation as − log10 𝑅 

 The first-derivative transformation of the absorbance spectra, using a Savitzky 
Golay filter of 1st order, polynomial size of 3, and window size of 51 

 The second-derivative transformation of the absorbance spectra, using a 
Savitzky Golay filter of 1st order, polynomial size of 3, and window size of 51 

 The continuum removal calculated as the quotient of each spectrum divided by 
its fitted convex hull 

 The Standard Normal Variate transformation which transforms each spectrum 
to have zero mean and a variance of 1 

 The de-trending transformation which acts as a baseline correction and removes 
the linear trend 
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Figure 2-83. The initial reflectance spectra, and the 6 pre-treatments examined; depicted are the 5th, 16th, 50th, 84th and 95th percentiles 



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 92 

 

2.4.5. Results of global models 

One approach is to create global models, i.e. models which will use all the samples which 
comprise the GEO-CRADLE SSL, in order to predict the soil properties. The idea is that 
irrespective of the sample’s origin, a global model should be able to give a good first-
order approximation of its physical and chemical properties. To generate these models, 
each combination of spectral pre-treatment and algorithm was tested in order to 
develop the most accurate models. The best models developed are given in Table 2-15 
for 3 of the most ubiquitous properties. These results indicate that a global model, 
although it may yield somewhat moderate results for the Clay Fraction, its accuracies 
are diminished for other soil properties. This suggests that naïve global models are not 
sufficiently accurate to discern minute changes in the concentration of the constituents. 
In the literature there are many references which may found that conclude that global 
models usually fail to produce sufficient accuracy; this gave rise to a number of other 
local approaches which attempt to utilize the spatial distance and/or spectral similarity 
to create local models (e.g. [5], [39], [40]). 

 
Table 2-14. Results of the best models for the 3 most common properties 

Property Preprocess Algorithm RMSE R2 RPIQ 

Clay Fraction Reflectances SVM 8.90 0.76 1.19 

OM Abs + 1st der. SVM 0.52 0.49 1.82 

CaCO3 Abs + 1st der. Cubist 1.86 0.27 0.37 

 

2.4.6. Results of per-country models 

Another approach entails the development of specific models per each country. 
Although not a very sophisticate, it rests upon the assumption that the regression 
problem should be decoupled given that soils from one region may be significantly 
dissimilar to soils from another. To this end, country specific models were developed 
using every possible combination of pre-processing technique and soil property (Table 
2-15). It must be noted that the results were not particularly improved, highlighting the 
difficult of the task. Although some notable examples exist (e.g. Clay Fraction for most 
countries, OM for Greece and Israel) some models do not produce sufficiently good 
results. This signals the fact that a more complex decoupling local approach must be 
applied and put to the test. 

 
Table 2-15. Results of the best models per-country for the 3 most common properties 

Country Property Preprocess Algorithm RMSE R2 RPIQ 

Albania Clay Fraction Abs + 2nd der. SVM 8.62 0.54 1.15 
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Albania OM CR Cubist 0.61 0.39 1.62 

Bulgaria Clay Fraction Ref + detrending SVM 8.00 0.78 3.64 

Bulgaria OM Absorbances SVM 1.33 0.45 0.77 

Cyprus Clay Fraction Ref + SNV SVM 5.49 0.20 1.55 

Cyprus OM Abs + 2nd der. SVM 2.96 0.30 0.09 

Cyprus CaCO3 Reflectances Cubist 19.75 0.59 2.29 

FYROM Clay Fraction Ref + SNV PLS 10.62 0.50 1.35 

FYROM OM Reflectances Cubist 0.52 0.39 1.22 

Greece Clay Fraction Ref + SNV Cubist 6.12 0.38 1.31 

Greece OM Abs + 1st der. SVM 0.33 0.65 2.42 

Greece CaCO3 Ref + detrending SVM 0.67 0.15 0.53 

Israel Clay Fraction Abs + 2nd der. SVM 6.59 0.88 3.91 

Israel OM Ref + detrending SVM 2.03 0.51 1.17 

Israel CaCO3 Reflectances SVM 16.14 0.05 1.11 

Serbia Clay Fraction CR SVM 10.57 0.24 1.09 

Serbia OM Abs + 2nd der. Cubist 0.87 0.22 1.03 

Serbia CaCO3 Reflectances SVM 0.53 0.10 1.77 

Turkey Clay Fraction Reflectances SVM 8.69 0.76 3.30 

Turkey OM Abs + 1st der. SVM 0.78 0.46 1.38 

Turkey CaCO3 Abs + 1st der. Cubist 11.28 0.27 1.37 

 

2.4.7. The Local Gaussian Process Regression approach 

Taking into consideration all of the above, as well as the current research trends and 
state-of-the-art of soil spectroscopy, local models must be developed which will 
compensate for the poor performance results of the global models. The context of 
locality can have a dual meaning: a) it may refer to spatial locality, i.e. samples that are 
geographically neighbours, b) or to spectral locality, i.e. samples whose spectral 
signature is similar. Both of these are important and may be exploited to enhance the 
performance of the models. 

To utilize both criteria of locality, a novel memory-based learning approach was 
considered, building upon works of the Spectrum-based Learner [39], a local PLSR model 
developed for the LUCAS SSL [40], and a local PLSR model developed for the Chinese SSL 
[5]. The basic idea of the model is to use memory-based learning to create for each 
testing pattern (unknown sample) a new model developed after taking into account its 
closest neighbours, defined using both terms of spatial and spectral locality. The 
underlying model utilizes Gaussian Process regression to predict the soil properties. The 
algorithm has been detailed extensively and was submitted for publication in a peer-
reviewed scientific journal. 

Therefore, the modified Local Gaussian Regression algorithm (LGR) involves the 
following steps: 
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1. Fit a set of pre-processing techniques S in the original spectra and then calculate 
as a weighted mean of the spectral and spatial distance, the distance vector 
between each prediction sample and all the reference samples. Possible 
combinations of weights with corresponding values of 0, 1/2 and 1 are evaluated 
for spectral and geographical coordinates vectors.  

2. Generate datasets with the most similar local calibration sets for each prediction 
sample. In this line, the model search for k nearest neighbours that fulfil the 
criteria to minimize each di as generated in the previous step. The optimal k for 
nearest neighbours tested among the values 40 to 250 following a step of 15. 

3. Fit a multivariate regression model with the local calibration samples (described 
in step 2) and select the optimal parameters that minimize the RMSE in the 
calibration step. Those parameters could be the weight of geographical and 
spectra co-variables and the selected pre-processing method in computation of 
distance vector.  

4. Finally, a Gaussian process regression with a linear covariance function is 
performed for each prediction sample. 

Table 2-16 indicates the results of the performance of the best prediction of soil 
attributes utilizing the LGR after hyper-parameter tuning. It is noted that for all the 
models, an equal weight (1/2) for the spectral and spatial distance produced the most 
predictive model. 

 
Table 2-16. Results of the LGR algorithm – k indicates the number of selected nearest 

neighbours 

Property k RMSE R2 RPIQ 

Organic C % 190 0.49 0.64 1.85 

CaCO3 100 3.45 0.93 0.69 

log10(CaCO3) 115 0.18 0.90 2.99 

pHwater 115 0.49 0.82 2.97 

Clay % 190 6.50 0.83 2.49 

Sand % 220 10.88 0.78 2.94 

Silt % 190 8.54 0.66 2.49 

EC 85 1.70 0.62 0.76 

 

2.4.8. A GA-based stacking approach 

A novel GA-based stacking algorithm for predicting soil properties was developed during 
the project’s realization phase and applied in the GEO-CRADLE SSL. The algorithm has 
been detailed extensively and was submitted for publication in a peer-reviewed 
scientific journal. This global approach relies on the application of ensemble learning 
[41], [42] which effectively combines the base models developed. In this approach we 
elected to examine the performance of the algorithm using as base models the globally 
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developed models (i.e. where each model uses soil samples extending to the whole RoI). 
Instead of selecting the best model out of the many developed ones, it is possible to 
combine their predictions, to create a meta-model. Model stacking refers to the process 
of training a learning algorithm to combine the predictions of other learning algorithms, 
in order to obtain results which are better than the results obtained by each constituent 
model. The approach involves the stacking of the different models (termed L1 models) 
through the creation of a meta-regressor comprised of models stemming from different 
pre-processing techniques and machine learning algorithms. The derived ensemble 
regressor is named L2 model. Taking into account that there are many different pre-
processing methods, and many different machine learning algorithms (as seen in the 
previous sections), it is computationally expensive to search every possible combination; 
thus, a genetic algorithm (GA) [43] is used to automatically find the most efficient and 
accurate combination of models. Since this approach relies on the combination of 
different models, it is important to combine models that produce accurate but 
uncorrelated predictions (considering that combining the same predictions cannot 
possibly yield better results). This is the objective of the custom GA algorithm.  

The necessity of GA is dictated by the sheer number of potential combinations of 
models. Suppose that we have 𝑃 pre-processing methods and 𝑀𝐿1

 machine learning 

algorithms, with a total of 𝑃 × 𝑀𝐿1
 of different L1 models. Further, granted that the 

minimum number of L1 models that can be combined is 2, suppose that there is an 
arbitrary integer 𝑘 such that 2 ≤  𝑘 ≤ 𝑃 × 𝑀 denoting the upper limit on the maximum 
models to be combined by the stacking algorithm. Then, the different combinations of 
models which can be combined using one of the 𝑀𝐿2

 machine learning algorithms are: 

𝑐 = 𝑀𝐿2
×  ∑ (

𝑃 × 𝑀𝐿1

𝑘
)

𝑖=𝑘

𝑖=2

 

A visualization of the number of combinations for various values of 𝑘, 𝑃 and 𝑀𝐿1
=

𝑀𝐿2
= 𝑀 is given in Figure 2-84. 
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Figure 2-84. The number of possible L2 models for various values of P, M, and k. 

 

A high-level overview of the GA-based stacking algorithm is presented below: 

1. Define and apply all 𝑃 pre-processing methods on the initial spectra 

2. Define all 𝑀𝐿1
 machine learning algorithms, and build all 𝑃 × 𝑀𝐿1

 L1 models 

using the calibration data 

3. Define 𝑘 as the maximum number of L1 models which can be combined by the 
L2 model, and all 𝑀𝐿2

 machine learning algorithms. 

4. Randomly generate an initial population of 𝑁𝑃 chromosomes, each fully defining 
a L2 model, and calculate their respective fitness 

5. For each of the training generations repeat: 

a. Generate 𝑁𝑃 offspring using mutation and two-point modulo crossover 
while also maintaining diversity in the population 

b. Evaluate the fitness of the offspring  
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c. Perform an elitist selection on the joint population of parent and 
offspring chromosomes to create the new population of size 𝑁𝑃 

6. Output the best chromosome (L2 model) of the population and use it to predict 
the testing data 

The advantage of the algorithm is that it combines the L1 models that are built either 
way by the experts, who test different combinations to identify the best model; this is 
the approach followed and detailed in Section 2.4.5. In other words, it does not add a 
significant computational cost and the methodology builds upon what is contemporarily 
used. 

Once a L2 model configuration is established, new testing patterns are predicted per 
Figure 2-85, i.e. the constituent L1 models are used to produce their predictions which 
are served as input to the stacking model (L2 model) which creates the final estimation 
of the output. 

 
Figure 2-85: The prediction of a testing pattern according to the algorithm – once a 

configuration of the L2 model is established, the predictions of the constituent models are 
utilized to produce a new estimation 

This novel algorithm was developed and applied in the GEO-CRADLE SSL to predict three 
common soil properties, namely the Organic Matter, the Clay Fraction, and calcium 
carbonate (CaCO3). Table 2-17 presents the results of the algorithm. It must be noted 
that the results were improved over the best models (see Table 2-14 for the base L1 
models results). One can observe the ability of the L2 model to offset large prediction 
errors and establish better predictions. 
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Table 2-17. Results of the GA-based stacking algorithm 

Property L2 model No. of L1 models RMSE R2 RPIQ 

Clay Fraction PLS 5 7.20 0.84 1.47 

OM PLS 4 0.47 0.58 2.01 

CaCO3 Cubist 4 1.24 0.67 0.56 

 

2.5. Feasibility study – The case of the Drin River basin 

2.5.1. Description of the task 

2.5.1.1. Scope 

The main scope of this study was to explore the capability of in situ sampling, open soil 
spectral libraries, and ancillary satellite image data fusion to produce high resolution soil 
thematic maps, in a catchment basement scale. More specifically, the Drin river basin 
inside the Albanian territory was considered, and the properties of soil moisture and soil 
clay content were chosen between others because of their importance in the 
development of hydrological models. The following subsections will highlight how the 
developed GEO-CRADLE SSL can be exploited by other users in the future to produce 
relevant EO products. 

2.5.1.2. The Drin river basin 

The Drin is the longest river in Albania, having a total length of 335 km, 285 of which 
flow within. The river has two distributaries; one flowing directly into the Adriatic Sea in 
the west, the other one into the Buna River. Its catchment area concludes an area of 
19,686 square kilometres. It includes the Black Drin, which drains from Lake Ohrid and 
flows northwards to the outskirts of Kukës, where it merges with White Drin and forms 
the Drin River. The river basin is one of the most biodiverse hotspots in Europe. 

The extended Drin Basin: 

 Extends to Albania, FYROM, Greece, Kosovo, and Montenegro (Drin Riparians) 

 Comprises the sub–basins of five water bodies, each one of them shared by two 
or three Riparians: 

o Two rivers: the Drin and its two major tributaries, the Black Drin and the 
White Drin, as well as the Buna/Bojana River 

o Three lakes: Prespa, Ohrid and Skadar/Shkoder 

 Covers a geographical area of about 19,000 km2 

 Is characterized by mountainous relief - the highest peaks are over 2,500 m - with 
flat land in the coastal area. 
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 Hosts about 1.5 million people who rely on the water resources of the basin for 
drinking water, agriculture, fisheries, industry, hydropower and for supporting 
the provision of tourism services. 

 Encompasses complex ecosystems of major importance that host unique 
biotopes with many indigenous species, important both from a European and an 
international conservation perspective. 

 Sustains and affects coastal and marine ecosystems in the Adriatic, through its 
freshwater flow. 

The Drin River is the “connecting body” of the extended Drin Basin, linking the lakes, 
wetlands, rivers and other aquatic habitats, with a system of groundwater bodies, into 
a single, yet complex, hydrological ecosystem. 

The basin is depicted in Figure 2-86. Setting out from the two Prespa Lakes, linked to 
each other by a small channel, water flows through underground karst cavities to Lake 
Ohrid, the largest lake in terms of water volume in South East Europe. The only surface 
outflow of Lake Ohrid, the Black Drin River flows north through FYROM and enters 
Albania. The White Drin River rises in Kosovo, flows into Albania, where it meets the 
Black Drin and forms the Drin River. Flowing westward through Albania, the Drin River 
meets the Buna/Bojana River, close after the outflow of the latter from Lake 
Skadar/Shkoder, the largest lake in terms of surface in South East Europe. The 
Buna/Bojana River directly discharges into the Adriatic Sea. 

The area examined in this pilot and in the subsequent sections covered the basin located 
within the geographical area of Albania. 
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Figure 2-86. The Drin River basin 
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2.5.1.3. Overview  

To derive EO-driven soil thematic maps, it is necessary to have the following layers of 
observation (visualized in Figure 2-87): 

 Ground reference data, containing the geo-referenced ground truth for the 
examined properties, coupled with their spectral signatures 

 Earth observation data of the same period of the sampling data 

 Auxiliary data which may assist the prediction of the properties 

Typically, there are four major groups of the auxiliary information: climate, organism, 
relief, parent material and time. McBratney et al. [44] further added to this list the 
geographical location of the soil profiles and the available soil properties that show 
correlation with the ones to be estimated. These are the major inputs of a statistical 
framework – also known as SCORPAN – used to predict soil variables at each location of 
the study of interest. SCORPAN is a conceptual model of soil spatial inference. 

A common spatial prediction technique that can be used to apply SCORPAN model is the 
regression-kriging, which we use to illustrate the general flow of data through the 
system to estimate the unknown soil parameters. These models assume that there is a 
stochastic relationship between various predictors and target soil variables, although it 
can also be used to improve the deterministic models of soil genesis [45]. 



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 102 

 

 
Figure 2-87. The high-level overview of the approach needed to derive EO-based maps 

 

2.5.2. Sampling planning 

For the implementation of the case study of soil thematic mapping in the Drin basin, a 
soil sampling field campaign was scheduled to take place during the mid-July – August 
time frame. This was important as ground truth data are imperative in order to calibrate 
the models. 

A preliminary sampling planning was considered, and for that reason a Sentinel 2 
satellite multispectral image of early July date was analysed.  Land cover classification 
indicated the bare soil sites within the basin. The basic principle that dictated the soil 
sampling procedure was that it would be conducted on lowland flat areas, with low 
terrain slope, on sites with bare soil land cover, agricultural land use and a certain 
variation of Soil Taxonomy. The concept behind it is that these are regions that mostly 
face serious flooding issues, and alongside, display a visible soil colour range, on the 
satellite image. A stratified random sampling approach was followed. 
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In stratified sampling, the population is partitioned into non-overlapping groups, called 
strata and a sample is selected by some design within each stratum. 

A stratification of the sampling was achieved, as far as the variability of the USDA Soil 
Taxonomy Classes involved, with the aid of a regional soil map layer provided by INCA. 
The abovementioned criteria were spatially implemented, with the aid of a Drin Bruna 
basin DEM and a CORINE Land Cover Map Layer, in the form of some initial sampling 
region polygons in Shkodra, Kukes, and Pogradec plains.  

These sites were extracted from the satellite image, and their spectral variability in the 
Vis –NIR range was examined in comparison to Munsell soil color system. An ISODATA 
unsupervised classification of the multispectral image resulted in the segmentation and 
subdivision of the initial sampling regions into 3 spectral clusters. As a result, a random 
point set was created for each sampling region and each spectral cluster. Some further 
modifications of the sampling pattern, involved the reposition of some sampling points 
in order to achieve a better accessibility for the sampling field team. Ultimately the 
sampling planning resulted in 150 sampling locations within the Drin river basin. 

 

2.5.3. Soil Field Survey 

Soil Sampling was performed by INCA, on the Shkodra, Kukes and Pogradec regions, and 
the field campaign lasted from 15 July to 04 August. Sampling was performed with an 
Edelman soil auger, and sampling points were logged in a GNSS - DGPS with submeter 
accuracy. At each recorded location, 3 augers for a subsample of 20 gr of soil, were 
obtained from the topsoil layer (0-30 cm), within a 5m radius. Additionally, soil color was 
noted according to a Munsell soil color chart. Subsamples were mixed to form the 
sample. Sampling coding followed the nomenclature used in the whole spectral library 
project (County Code – Soil Taxonomy Code – Soil Horizon Code – Sampling ID, e.g AL-
LV-030-00123). At every site, the sample was measured for total wet weight, and in situ 
conditions of Air Temperature and Relative Humidity were noted. Due to field 
accessibility reasons the total number of samples was reduced to 107. 

Testing the actual sampling dataset for Complete Spatial Randomness of the pattern, an 
Average Nearest Neighbor z –score testing was performed for Shkodra, Kukes and 
Pogradec respectively.   

The spatial pattern analysis of the results showed that: 

 At Shkodra the sampling presented a spatially clustered pattern, at a 10% 
significance level (Figure 2-88). 

 At Kukes the sampling presented a spatially dispersed pattern, at a 5 % 
significance level (Figure 2-89). 

 At Pogradec the sampling presented a complete spatial random motif (Figure 
2-90). 
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Figure 2-88. The sampling points of the Shokdra region (left) and the spatial pattern analysis 

(right) 

 

 
Figure 2-89. The sampling points of the Kukes region (left) and the spatial pattern analysis 

(right) 
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Figure 2-90. The sampling points of the Pogradec region (left) and the spatial pattern analysis 
(right) 

 

2.5.4. Earth Observation data considered 

The Earth Observation data considered for this study are the multi-spectral maps of 
Sentinel-2 (Copernicus data) and of Landsat-8 (NASA data). More concretely, the use of 
these specific products was decided, due to their individual advantages they offer for 
soil mapping applications. The soil Clay composition mas mapped with ancillary Sentinel 
2 images, to make use of a more detailed spectral resolution on the Red/ Red Edge and 
NIR parts of the Soil Spectral Curve (Bands 4/5/6/7/8A), as well as the 2 SWIR Bands. On 
the contrary, soil Moisture mapping was based on the Mid Infrared absorption bands in 
combination with Land Surface Temperature information found on the Thermal Infrared 
part of the spectrum. For that reasons, the use of Landsat 8 data was preferred. 
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Figure 2-91. Comparison between the bands of Landsat 7 and 8 with the bands of Sentinel-2 

 

2.5.4.1. Sentinel-2 

Sentinel-2 is an Earth observation mission developed by ESA as part of the Copernicus 
Programme to perform terrestrial observations in support of services such as forest 
monitoring, land cover changes detection, and natural disaster management. It consists 
of two identical satellites built by Airbus DS, Sentinel-2A and Sentinel-2B, with two 
additional satellites being constructed by Thales Alenia Space. 

The Sentinel-2 mission has the following capabilities: 

 Multi-spectral data with 13 bands in the visible, near infrared, and short-wave 
infrared part of the spectrum 

 Systematic global coverage of land surfaces from 56° S to 84° N, coastal waters, and 
all of the Mediterranean Sea 

 Revisiting every 5 days under the same viewing angles. At high latitudes, Sentinel-2 
swath overlap and some regions will be observed twice or more every 5 days, but 
with different viewing angles. 

 Spatial resolution of 10 m, 20 m and 60 m 

 290 km field of view 

 Free and open data policy 

To achieve frequent revisits and high mission availability, two identical Sentinel-2 
satellites (Sentinel-2A and Sentinel-2B) are operating simultaneously. The orbit is Sun 
synchronous at 786 km (488 mi) altitude, 14.3 revolutions per day, with a 10:30 a.m. 
descending node. This local time was selected as a compromise between minimizing 
cloud cover and ensuring suitable Sun illumination. It is close to the Landsat local time 
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and matches SPOT's, allowing the combination of Sentinel-2 data with historical images 
to build long-term time series. 

The Sentinel-2 satellites each carry a single multi-spectral instrument (MSI) with 13 
spectral channels in the visible/near infrared (VNIR) and short-wave infrared spectral 
range (SWIR), with the complete spectral configuration presented in Table 2-18. 

 
Table 2-18. The spectral configuration of the on-board MSI of Sentinel-2 

Sentinel-2 Bands 
Central  

Wavelength (nm) 
Resolution 

(m) 
Bandwidth 

(nm) 

Band 1 Coastal aerosol  0.433 60 20 

Band 2 Blue 0.490 10 65 

Band 3 Green 0.560 10 35 

Band 4 Red 0.665 10 30 

Band 5 Vegetation Red Edge 0.705 20 15 

Band 6 Vegetation Red Edge 0.740 20 15 

Band 7 Vegetation Red Edge 0.783 20 20 

Band 8 NIR 0.842 10 115 

Band 8A Narrow NIR 0.865 20 20 

Band 9 Water vapor fF0.945 60 20 

Band 10 SWIR-Cirrus 1.375 60 20 

Band 11 SWIR 1.610 20 90 

Band 12 SWIR 2.190 20 180 

 

The Sentinel Level-2A product offers bottom of atmosphere reflectances in cartographic 
geometry, performing appropriate atmospheric correction through ATCOR code. This 
product is currently processed on the user side by using a processor running on ESA’s 
Sentinel-2 Toolbox. The possibility of making a standard core product systematically 
available from the Sentinels core ground segment is currently being assessed as part of 
the CSC evolution activities. 

 

2.5.4.2. Landsat-8 

Landsat 8 is an American Earth observation satellite launched on February 11, 2013. It 
is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. 
Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration 
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between NASA and the United States Geological Survey (USGS). NASA Goddard Space 
Flight Center in Greenbelt, Maryland, provided development, mission systems 
engineering, and acquisition of the launch vehicle while the USGS provided for 
development of the ground systems and will conduct on-going mission operations 

Landsat 8's Operational Land Imager (OLI) improves on past Landsat sensors and was 
built, under contract to NASA, by Ball Aerospace. OLI uses a technological approach 
demonstrated by the Advanced Land Imager sensor flown on NASA’s experimental EO-
1 satellite. The OLI instrument uses a push-broom sensor instead of whiskbroom sensors 
that were utilized on earlier Landsat satellites. The push-broom sensor aligns the 
imaging detector arrays along Landsat 8's focal plane allowing it to view across the entire 
swath, 115 miles (185 kilometres) cross-track field of view, as opposed to sweeping 
across the field of view. With over 7,000 detectors per spectral band, the push-broom 
design results in increased sensitivity, fewer moving parts, and improved land surface 
information. 

OLI collects data from nine spectral bands (Table 2-19). Seven of the nine bands are 
consistent with the Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 
sensors found on earlier Landsat satellites, providing for compatibility with the historical 
Landsat data, while also improving measurement capabilities. Two new spectral bands, 
a deep blue coastal / aerosol band and a shortwave-infrared cirrus band, will be 
collected, allowing scientists to measure water quality and improve detection of high, 
thin clouds. 

 
Table 2-19. The spectral configuration of the on-board OLI of Landsat 8 

OLI Bands Wavelength (nm) Resolution (m) 

Band 1 Coastal aerosol  433-453 30 

Band 2 Blue 450-515 30 

Band 3 Green 525-600 30 

Band 4 Red 630-680 30 

Band 5 Near Infrared 845-885 30 

Band 6 Short Wavelength Infrared 1560-1660 30 

Band 7 Short Wavelength Infrared 2100-2300 30 

Band 8 Panchromatic 500-680 15 

Band 9 Cirrus 1360-1390 30 

 

The Thermal InfraRed Sensor (TIRS), built by the NASA Goddard Space Flight Center, 
conducts thermal imaging and supports emerging applications such as 
evapotranspiration rate measurements for water management. The TIRS focal plane 
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uses GaAs Quantum Well Infrared Photodetector arrays (known as QWIPs) for detecting 
the infrared radiation—a first for the Landsat program. The TIRS data will be registered 
to OLI data to create radiometrically, geometrically, and terrain-corrected 12-bit Landsat 
8 data products. Like OLI, TIRS employs a push-broom sensor design with a 185-
kilometre swath width. Data for two long wavelength infrared bands will be collected 
with TIRS. This provides data continuity with Landsat 8's single thermal IR band and adds 
a second. 

 
Table 2-20. The spectral configuration of the on-board TIRS of Landsat 8 

TIRS Bands Wavelength (μm) Resolution (m) 

Band 10 Thermal Infrared 10.30-11.30 100 

Band 11 Thermal Infrared 11.50-12.50 100 

 

The U.S. Geological Survey (USGS) offers on-demand production of Landsat 8 
Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) Surface Reflectance data 
through EarthExplorer. Surface Reflectance products provide an estimate of the surface 
spectral reflectance as it would be measured at ground level in the absence of 
atmospheric scattering or absorption. The Surface Reflectance products are generated 
at the Earth Resources Observation and Science (EROS) Centre at a 30-meter spatial 
resolution. The EROS Science Processing Architecture (ESPA) on-demand interface 
corrects satellite images for atmospheric effects to create Level-2 data products. 
Landsat 8 Surface Reflectance data are generated from the Landsat Surface Reflectance 
Code (LaSRC). LaSRC makes use of the coastal aerosol band to perform aerosol inversion 
tests, uses auxiliary climate data from MODIS and uses a unique radiative transfer 
model. Additionally, LaSRC hardcodes the view zenith angle to “0”, and the solar zenith 
and view zenith angles are used for calculations as part of the atmospheric correction. 

 

2.5.4.3. Land Cover Classifications – Cloud Masks 

Both Sentinel 2 and Landsat 8 Level 2 Data Products include scene Land Cover 
classification layers, that were used in this study for the identification of the basic land 
cover types (Water, Vegetation, Bare Soil, Urban) and the creation of cloud cover mask 
layers 

 

2.5.4.4. Data Averaging 

In order to get a mean value of the Soil Clay/ Moisture over the sampling survey 
timespan, two image mosaics for each satellite platform were created, and were 
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ultimately averaged to create Landsat 8 / Sentinel 2 mean reflectance images (named 
L8mr and S2mr). 

 

2.5.4.5. Earth Observation data derivative products 

Prior to processing of the raw EO data, it is important to first apply data transformation 
techniques which elucidate the underlying information. We derived a number of data 
products, which are listed below [46], [47]. 

Land Surface Temperature from Landsat 8 images 

The brightness temperature is a measurement of the radiance of the microwave 
radiation traveling upward from the top of the atmosphere to the satellite, expressed in 
units of the temperature of an equivalent black body.  The brightness temperature (or 
TB) is the fundamental parameter measured by passive microwave radiometers.  The 
brightness temperatures, measured at different microwave frequencies, are used at 
Remote Sensing Systems to derive wind, vapor, cloud, rain, LST and SST products. 

 

Conversion to Top of Atmosphere Radiance 

OLI and TIRS band data can be converted to TOA spectral radiance using the radiance 
rescaling factors provided in the metadata file: 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 

where:   

𝐿𝜆 = TOA spectral radiance (Watts / (m2 × srad × μm)) 

𝑀𝐿 = Band-specific multiplicative rescaling factor from the metadata 
(RADIANCE_MULT_BAND_x, where x is the band number) 

𝑄𝑐𝑎𝑙 = Quantized and calibrated standard product pixel values (DN) 

𝐴𝐿 = Band-specific additive rescaling factor from the metadata 
(RADIANCE_ADD_BAND_x, where x is the band number) 

 

Conversion to Top of Atmosphere Brightness Temperature 

TIRS band data can be converted from spectral radiance to top of atmosphere brightness 
temperature using the thermal constants provided in the metadata file: 
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𝑇 =
𝐾2

ln (
𝐾1

𝐿𝜆
+ 1)

 

where:   

T = Top of atmosphere brightness temperature (K) 

𝐿𝜆 = TOA spectral radiance (Watts / (m2 × srad × μm)) 

𝐾1 = Band-specific thermal conversion constant from the metadata 
(K1_CONSTANT_BAND_x, where x is the thermal band number) 

𝐾2 = Band-specific thermal conversion constant from the metadata 
(K2_CONSTANT_BAND_x, where x is the thermal band number) 

 

Reclassification of Land Cover Classification to Emissivity Values 

Several studies used NDVI for the estimation of land surface emissivity [48]; other 
studies used a land cover classification for the definition of the land surface emissivity 
of each class [49] .For instance, the emissivity (e) values of various land cover types are 
provided in Table 2-21 (from [50]). 

 
Table 2-21. Emissivity values for different land surface types 

Land surface type Emissivity (ε) 

Water 0.980 
Built-up 0.937 
Vegetation 0.982 
Bare soil 0.928 

 

Estimation of Land Surface Temperature 

Several studies have described the estimation of Land Surface Temperature. Land 
Surface Temperature can be calculated from At-Satellite Brightness Temperature TB as 
in [49] : 

𝑇 =
𝑇𝐵

1 + (𝜆 ×
𝑇𝐵
𝑐2

) × ln (𝜀)
 

where 

λ  Wavelength of emitted radiance  
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𝑐2 ℎ × 𝑐/𝑠 1.4388 10-2 m K 

ℎ Planck’s constant 6.626 10-34 J s 

𝑠 Boltzmann constant 1.38 10-23 J/K 

𝑐 Velocity of light 2.998 108 m/s 

 

The values of λ for Landsat bands are listed in Table 2-22. 

 
Table 2-22. Central wavelength of Landsat bands 

Satellite  Band  λ (µm) 

Landsat 4, 5, and 7  6 11.45 
Landsat 8  10  10.8 
Landsat 8  11  12 

 

Spectral Transformation – Principal Component Analysis 

PCA is used to transform the data in the input bands from the input multivariate 
attribute space to a new multivariate attribute space whose axes are rotated with 
respect to the original space. The axes (attributes) in the new space are uncorrelated. 
The main reason to transform the data in a principal component analysis is to compress 
data by eliminating redundancy. 

Conceptually, using a two-band raster, the shifting and rotating of the axes and 
transformation of the data is accomplished as follows: 

 The data is plotted in a scatterplot. 

 An ellipse is calculated to bound the points in the scatterplot Boundary of ellipse 
plotted 

 The major axis of the ellipse is determined. The major axis becomes the new x-axis, 
the first principal component (PC1). PC1 depicts the greatest variation because it is 
the largest transect that can be drawn through the ellipse. The direction of PC1 is 
the eigenvector, and its magnitude is the eigenvalue. The angle of the x-axis to PC1 
is the angle of rotation that is used in the transformation. 

  An orthogonal line perpendicular to PC1 is calculated. This line is the second 
principal component (PC2) and the new axis for the original y-axis (see the figure 
below). The new axis describes the greatest variance not described by PC1. 

Using the eigenvectors, the eigenvalues, and the calculated covariance matrix of the 
input of the multiband raster, a linear formula defining the shift and rotation is created. 
This formula is applied to transform each cell value relative to the new axis. For the 



    GEO-CRADLE H2020 SC5-18b-2015, GA No. 690133 

D4.6: Pilot Activity Report Improved Food Security – Water Extremes Management 113 

 

decorrelation of the initial EO data, bands 2,3,4,6,8, 11, and 12 from Sentinel 2 were 
factorized into 7 PCs. Similarly, bands 2,3,4,5,6,7, and Land Surface Temperature from 
thermal 10 and 11 were transformed into 8 PCs. These transformations were calculated 
on the whole raster, with presenting each transformation’s eigenvalues and explained 
variance for Sentinel-2 and Landsat-8, respectively. 

 
Table 2-23. Sentinel-2 Principal Components 

Sentinel 2 PCA EigenValue Explained Variance % 
Accumulative  

Explained Variance % 

S2_PC1 1.92E+01 96.9578 96.9578 

S2_PC2 5.38E-01 3.0313 99.9891 

S2_PC3 1.63E-03 0.0095 99.9986 

S2_PC4 1.88E-04 0.0011 99.9997 

S2_PC5 3.98E+00 0.0002 99.9999 

S2_PC6 1.47E+00 0.0001 100 

S2_PC7 6.44E-01 0 100 

 
Table 2-24. Landsat-8 Principal Components 

Landsat 8 PCA EigenValue Explained Variance % 
Accumulative  

Explained Variance % 

L8_PC1 2.22E+01 90.88 90.88 

L8_PC2 4.12E+00 5.32 96.20 

L8_PC3 4.68E-01 2.87 99.07 

L8_PC4 4.64E-02 0.92 99.99 

L8_PC5 4.99E-05 0.01 100.00 

L8_PC6 1.76E-05 0.00 100.00 

L8_PC7 8.56E-06 0.00 100.00 

L8_PC8 1.40E-06 0.00 100.00 

 

Spectral transformation – the Tasseled-Cap Transform 

The Tasseled Cap transformation [51] is designed to analyse and map vegetation and 
urban development changes detected by various satellite sensor systems. It is known as 
the Tasseled Cap transformation due to the shape of the graphical distribution of data. 
It was developed in 1976 by R.J. Kauth and G.S. Thomas of the Environmental Research 
Institute of Michigan (ERIM). In the paper (Kauth and Thomas, 1976), the researchers 
provided a rationale for the patterns found in Landsat MSS data of agricultural fields as 
a function of the life cycle of the crop. Essentially, as crops grow from seed to maturity, 
there is a net increase in near-infrared and decrease in red reflectance based on soil 
colour. 
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The utility of this transformation has expanded from monitoring crops to analysing and 
mapping vegetation to support a variety of applications such as forestry, industrial 
vegetation management, ecosystem mapping and management, inventory and 
monitoring for carbon sequestering and credits, urban development, and more. 

In remote sensing analysis it is common to ratio and plot different combinations of 
multispectral bands to examine relationships between the bands. The Tasseled Cap 
transformation is a special case of principal components analysis which transforms the 
image data to a new coordinate system with a new set of orthogonal axes.  

The primary axis, called brightness, is statistically derived and is calculated as the 
weighted sum of reflectances of all spectral bands and accounts for the most variability 
in the image. Brightness is associated with bare or partially covered soil, man-made, and 
natural features such as concrete, asphalt, gravel, rock outcrops, and other bare areas. 

 
Table 2-25. Weights for the Tasseled-Cap transformation 

 Blue Green Red NIR SWIR 1 SWIR 2 

Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863 
Greenness -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800 
Wetness 0.1509 0.1793 0.3299 0.3406 -0.7112 -0.4572 

 

Orthogonal to the first component, the second component greenness is associated with 
green vegetation, while the third component wetness is orthogonal to the first two 
components and is associated with soil moisture, water, and other moist features.  

The other additional components contain image noise and atmospheric influences, such 
as clouds, haze, sun angle differences, and so on, that have been removed from the first 
three more significant components. The first three components of the Tasselled Cap 
transformed imagery contain about 97 percent of the meaningful information available 
in the image. 

 

2.5.5. Other datasets considered 

2.5.5.1. Soil Moisture 

Soil moisture is an important component in the atmospheric water cycle, both on a small 
agricultural scale and in large-scale modelling of land/atmosphere interaction. 
Vegetation and crops always depend more on the moisture available at root level than 
on precipitation occurrence. Water budgeting for irrigation planning, as well as the 
actual scheduling of irrigation action, requires local soil moisture information. 
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Knowledge of the degree of soil wetness helps to understand the initiation of convective 
events, and to forecast the risk of flash floods, or the occurrence of fog. 

2.5.5.2. Gravimetric Soil Moisture Analysis 

The gravimetric soil moisture content is typically determined directly. Soil samples of 
about 50 g are removed from the field with the best available tools (shovels, spiral hand 
augers, bucket augers, perhaps power-driven coring tubes), disturbing the sample soil 
structure as little as possible [52]. The soil sample should be placed immediately in a 
leak-proof, seamless, pre-weighed and identified container. As the samples will be 
placed in an oven, the container should be able to withstand high temperatures without 
melting or losing significant mass. The most common soil containers are aluminium cans, 
but non-metallic containers should be used if the samples are to be dried in microwave 
ovens in the laboratory. If soil samples are to be transported for a considerable distance, 
tape should be used to seal the container to avoid moisture loss by evaporation. 

The samples and container are weighed in the laboratory both before and after drying, 
the difference being the mass of water originally in the sample. The drying procedure 
consists in placing the open container in an electrically heated oven at 105°C until the 
mass stabilizes at a constant value. The drying times required usually vary between 16 
and 24 h. Note that drying at 105°±5°C is part of the usually accepted definition of “soil 
water content”, originating from the aim to measure only the content of “free” water 
which is not bound to the soil matrix 

Soil samples acquired from Drin Basin were measured in the lab for soil moisture content 
by the gravimetric method. The soil moisture content θd may be expressed by weight as 
the ratio of the mass of water present to the dry weight of the soil sample, or by volume 
as ratio of volume of water to the total volume of the soil sample. To determine any of 
these ratios for a particular soil sample, the water mass must be determined by drying 
the soil to constant weight and measuring the soil sample mass after and before drying. 
The water mass (or weight) is the difference between the weights of the wet and oven 
dry samples. The criterion for a dry soil sample is the soil sample that has been dried to 
constant weight in oven at temperature between 100 – 110 oC (105 oC is typical). It 
seems that this temperature range has been based on water boiling temperature and 
does not consider the soil physical and chemical characteristics. Wet soil weight was 
measured in situ, directly on the field with the use of an electrical balance with precision 
of 0, 01 g. 

Gravimetric Soil Water Content is computed as: 

𝜃𝑑 =
weight of wet soil − weight of dry soil

weight of dry soil
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2.5.5.3. Digital Elevation Models and derived terrain parameters 

Relief or topography can be characterized with the use of digital elevation models 
(DEM). DEM is used to derive quantitative measures of soil forming processes, also 
called terrain parameterization [53]. This is a process of quantitative description of 
terrain by terrain parameters. These can be derived using various algorithms that 
quantify morphological, hydrological, ecological and other aspects of a terrain. In simple 
terms, terrain parameterization is extraction of terrain parameters using input digital 
elevation models and terrain parameterization software. Extracted terrain parameters 
can then be used, for example, to improve mapping and modelling of soils, vegetation, 
land use, geomorphologic and geological features and similar. There are relatively 
simple and easy to derive terrain parameters (the slope gradient, aspect, curvature) and 
there are some more complex ones which are derived with the combined use of the 
primary terrain parameters. The primary features are direct descriptors of the terrain 
features, like the slope, curvature or aspect, while secondary features describe more 
complex characteristics of the landform, which are linked to certain terrain-regulated 
processes, like stream power index or the compound topographic index (CTI). 

The terrain defines the way how the water moves through the landscape and transport 
soil materials in solid or soluted forms. Thus, the variables, which controls the way of 
water flow have the greatest significance in explaining the spatial distribution of 
numerous soil properties. The majority of the studies use slope gradient, curvature and 
CTI variables among others, which are proved to describe these water-movement–
controlled material transport through the landscape. Many of the soil landscape 
elements, variables have been translated to DEM-derivable format. There is a good and 
commonly accepted toolkit of digital terrain variables, but the need to develop new 
variables and approaches to improve our capability of soil-landscape modelling and 
decrease the unexplained portion of the soil-landscape relationship is still evident. 

In this particular study, an ASTER Digital Elevation Model (GDEM V2) covering the Drin 
Bruna river basin, was used as primary Terrain Dataset. The DEM’s spatial resolution is 
15 m on the horizontal plane, resampled into a 20-m pixel size grid. From the elevation 
dataset 2 ancillary datasets were calculated: slope, and the topographic wetness index. 
The first one was calculated as the 1st derivative of the elevation, using GIS tools. The 
calculation of the second one is detailed below. 

Topographic Wetness Index 

The topographic wetness index (TWI), also known as the compound topographic index 
(CTI), is a steady state wetness index. It is commonly used to quantify topographic 
control on hydrological processes. The index is a function of both the slope and the 
upstream contributing area per unit width orthogonal to the flow direction. The index 
was designed for hillslope catenas. Accumulation numbers in flat areas will be very large, 
so TWI will not be a relevant variable. The index is highly correlated with several soil 
attributes such as horizon depth, silt percentage, organic matter content, and 
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phosphorus. Methods of computing this index differ primarily in the way the upslope 
contributing area is calculated. 

The topographic wetness index is defined as: 

𝑇𝑊𝐼 = ln
𝑎

tan 𝑏
 

Where a is the local upslope area draining through a certain point per unit contour 
length and tan b is the local slope in radians. The TWI has been used to study spatial 
scale effects on hydrological processes. The topographic wetness index (TWI) was 
developed by Beven and Kirkby within the runoff model TOPMODEL. The topographic 
wetness index is unit less. TWI was utilized in the SAGA GIS environment, by the 
following steps: 

 Slope Derivation (b) 

The description of how the methods work are in reference to [54]. 

The computation of a slope parameter in a GIS environment is usually considered a 
trivial one-step algorithm that outputs visually appealing rasters. In SAGA GIS however, 
there are multiple methods for the calculation of slopes based on different 
considerations of geometry, polynomial order, and scale.  

  SAGA offers 8 different options for calculating slope: 

 Maximum slope 

 Maximum triangle slope 

 Least squares fitted plane 

 6 parameter 2nd order polynomial 

 6 parameter 2nd order polynomial 

 6 parameter 2nd order polynomial 

 9 parameter 2nd order polynomial 

 10 parameter 3rd order polynomial 

The method used here is the one proposed by Zevenbergen & Thorne which is the 9 
parameter 2nd order polynomial where slope is the first derivative of elevation. It uses 
a rectangular matrix of evenly spaced elevations that covers the entire area of the input 
layer where elevation points are used to determine the parameters in the quadratic 
equation. In other words, equation fitting is used to map out the surface and derive 
different indices (slope, aspect, curvature, etc.). This method uses an equation with 9 
parameters to resolve for indices. It is more general than the other methods using 6 and 
more flexible (if a surface is of lower order than the equation, the corresponding 
coefficients will equal zero and won’t influence the equation). 
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An advantage of this method is also the fact that it not only is able to yield an up slope 
area (drainage area contributing to a pixel) but also an up slope distance (longest travel 
path to an up slope divide). 

 Local Upslope Draining Area (a) 

 
- Sink Drainage Route Detection 

This method is used to correct for dips and sinks inherent in the DEM. The algorithm 
works by identifying sinks or pits in the digital terrain and the direction that water flows 
out of the sink. Such sinks are usually depressions in the DEM that are lower than their 
surrounding pixels which introduce error while using flow routing algorithms in 
hydrological analysis 

- Sink Removal 
- Catchment Area Calculation 

In their basic forms, catchment area methods use a flow accumulation algorithm that 
saturates a pixel depending on how many pixels upstream (area wise) lead into it across 
a topographic/directional gradient. The logic that determines how flow is transferred 
from one pixel to the other however is very variable and yield highly distinctive results. 

The catchment area algorithm used in this workflow is recursive. This means it takes in 
the filled DEM and recursively processes all upward connected pixels until all pixels have 
been processed and a value is computed. The computation of the area/accumulation 
value is selected to be done through a Multiple Flow Direction method. The available 
options for flow accumulation method are D8, D Infinity, and Modified Flow Distribution 
(MFD) out of which the latter one was chosen for implementation. 

MFD: this method computes the flow distribution with divergence. This means that 
instead of a total flow from one cell to the other based on gradient steepness, flow is 
distributed based on slope-weight basis and thus fractions of the flow are passed to 
neighboring cells differentially. This yields a more accurate representation of flow in 
variable terrain. 

 

2.5.6. Utilizing the regional soil spectral library 

The regional soil spectral library is comprised of laboratory spectra, allowing the 
estimation of soil variables at the sampling points. If airborne or satellite data are used, 
quantitative soil information over large areas may be provided. As noted before, the 
establishment of a stable and accurate SSL sufficiently sampling the covered region is 
not panacea. In particular, utilizing the database for its use in conjunction with satellite 
imagery should be done carefully, because there is a mismatch between the laboratory 
spectra and the satellite spectra. This discrepancy is due to the following factors: 
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 The spectral resolution is not the same – whereas laboratory spectra detailly 
cover the vis-NIR region with very fine spectral resolution, contemporary 
satellite data (e.g. Sentinel-2 data) have wider resolutions. Consequently, not all 
of the underlying information is sufficiently captured in satellite imagery. It is 
noted that the band width of the main airborne sensors is smaller than 40 nm, 
and thus their spectral range and accuracy is more suitable, if the use of airborne 
sensors is an option. 

 Remote-sensing data are usually not sufficiently stable due to the change of the 
atmospheric and soil conditions between two different acquisition times. An 
additional predicament is the uncertainty inserted by the pre-processing 
procedures (radiometric, atmospheric, and geometric correction); these 
corrections usually cause non-systematic or random differences between the 
measurements. 

 It is only possible to extract information about the topsoil (i.e. the upper layer). 
The upper layer of the soil is also not always directly visible by the satellite – 
depending on the time of the year and period, the soil might not be barren but 
riddled with weeds or plantations, which can obfuscate the spectra. 

Notwithstanding the above, the predictive accuracy of EO data for soil properties can be 
quite substantial, underscoring the potential of EO data in this domain. To understand 
the impact of the regional SSL, first the process followed without a regional SSL must be 
described. The contemporary approach involves the collection of soil samples within 
bare fields, laboratory analytical measurement of the target variables, and calibration of 
a multivariate model linking the quantity of the target variable with the spectra 
extracted from the remote-sensing instrument at the sampling points. This procedure 
generally ensures a high estimation accuracy within the investigated area, but it entails 
time-consuming and expensive data collection (extensive sampling, and chemical or 
physical laboratory analysis). However, the calibration of such models allows only local 
efficiency and their application to different conditions or areas is often difficult or 
impossible, even for neighbouring fields.  

In this context, the regional SSL can be exploited to decrease the efforts concerning the 
soil-variable estimation and obtaining more widely applicable models. A high-level 
overview of this approach is presented in Figure 2-92. 
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Figure 2-92. A flow-chart depicting how the GEO-CRADLE SSL can be used to derive EO-related 

soil thematic maps. 

In short, the approach still relies on the collection of some new soil samples from the 
region that will be examined using Earth Observation need. It however circumvents the 
laborious and costly need to use a chemical laboratory every time a EO product must be 
produced. Instead, the soil properties of the samples are predicted using the established 
SSL. These are then correlated with the EO spectra, so that in turn the whole examined 
region may be mapped with sufficient accuracy for the desired soil properties. 

To demonstrate this approach, some samples from the Albanian SSL were left-out of the 
GEO-CRADLE SSL. In other words, the dataset was split into calibration and validation. 
The calibration dataset was used in the development of the chemometric model. The 
model then predicted the outputs of the unknown validation sample. The joined set of 
calibration and validation was then used indistinguishably for the development of the 
Earth Observation models. 

 

2.5.7. Development of soil thematic maps 

2.5.7.1. Spatial Data Models – Regression Kriging method 

In detail, for the Soil Clay and Moisture variables, values were regressed over the 
Predictor layers. Evaluating the regression model on the predictor layers gave the global 
trend surface of the soil variables over the study area. The significance of this trend 
depends on the 𝑅2 of validation. According to the geostatistical theory of regionalized 
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variable this trend constitutes the structural – deterministic part of the modelled 
property and lacks information about the local variability. This correlated variation is 
usually present in the regression residuals that make up the stochastic part of the 
modelled variable, with the precondition that they are spatially autocorrelated and 
follow a normal distribution.  

Geostatistical interpolation methods like Regression – Kriging combine a regression of 
the dependent variable on auxiliary predictors with kriging of the regression residuals in 
order to handle the local variability present in the data [55], [56]. The following diagram 
shows a decision tree for selecting a suitable spatial prediction model. Consequently 
regression (OLS or GWR) residuals were tested for normality and spatial autocorrelation. 
Normality testing showed that the assumption of normality of residuals could not be 
rejected. 

 
Figure 2-93. Decision tree for selecting a suitable spatial prediction model 
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In a spatial context, the sampling pattern was analysed, to detect its deviation from the 
Complete Spatial Random distribution (CSR), find out spatial clustering or dispersion, 
and derive the Average Nearest Neighbor (AvNN = 1147 for Shkodra, 896 for Kukes and 
1076 for Pogradec). AvNN is a good measure of the spatial pattern density, necessary 
for the determination of spatial lags, and the cartographic scale of the data.  

Each soil property was tested for spatial autocorrelation, in a global context with the use 
of Moran Index, and in a local scale with the use of incremental Moran correlograms.  
The aim of the analysis was to detect statistically significant spatial autocorrelation, a 
key property of geostatistics, as well as the lag distance within which it is observed. 

Data stationarity, another geostatistics precondition, was tested with the graphical tool 
of Voronoi polygons, of mean and variance values to detect whether statistical measures 
remain constant in the study area, or if there exists some spatial trend in the data. 
Stationarity analysis showed that regression residuals had almost no further trend in 
them. Furthermore, the Voronoi tool, with the aid of the “cluster” command, showed 
some possible spatial outliers, in the sense of data points with highly different values for 
their neighbours. As a result from this analysis, a Simple Kriging of the Residual values 
was decided. The interpolated layer would be added to the regression layer in order to 
give the final Soil Property layer.  

 

2.5.7.2. Multivariate Data – Pairwise Correlation 

An initial pairwise correlation was calculated between all the inputs and the outputs. 
The inputs are: the initial satellite bands, their principal components, as well as the 
ancillary data used. The results can be found in Table 2-26. As far as the Clay Content is 
concerned, the best correlation is produced from the first PC and the TWI, indicating 
that a combined use of the spectral channels and local topography are the most 
important predictors. For soil moisture, a number of channels (in particular the SWIR 
and TIR channels), as well as the combination of the spectral channels via the PC 
transform produce the best correlations. 
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Table 2-26. Pairwise correlations between the bands, their PCs, and the ancillary data with the 
output for Clay Content (left) and Soil Moisture (right) 

Soil Clay Content 

S2_BLUE -0.0091 

S2_GREEN -0.0264 

S2_RED 0.0385 

S2_RED EDGE 0.0261 

S2_NIR1 0.1036 

S2_SWIR1 0.1072 

S2_SWIR2 0.1469 

S2_PC1 0.4127 

S2_PC2 0.1350 

S2_PC3 0.1415 

S2_PC4 0.0234 

S2_PC5 -0.1518 

S2_PC6 -0.0294 

S2_PC7 -0.0072 

S2_TC_Br 0.0350 

S2_TC_Gr -0.0409 

S2_TC_We 0.0649 

Slope 0.2526 

TWI -0.4920 

Elevation 0.4174 
 

Soil Moisture 

L8_BLUE -0.3169 

L8_GREEN -0.3519 

L8_RED -0.4531 

L8_NIR -0.0563 

L8_SWIR 1 -0.4932 

L8_SWIR 2 -0.5770 

LST_L8_TIR 1 -0.4723 

LST_L8_TIR 2 -0.5029 

L8_PC1 -0.5123 

L8_PC2 -0.3971 

L8_PC3 -0.4748 

L8_PC4 0.3173 

L8_PC5 -0.0990 

L8_PC6 0.0232 

L8_PC7 0.2439 

L8_PC8 -0.3338 

L8_TC_Br -0.3943 

L8_TC_Gr 0.3655 

L8_TC_We 0.5147 

Slope 0.1336 

TWI 0.2109 

Elevation -0.3757 
 

2.5.7.3. Regression Modelling 

Soil Moisture - MLR Model 

The general model of Multiple Linear Regression, relating a response variable to several 
predictors by means of regression coefficients, has the following shape: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝑓 

The SVD (Singular Value Decomposition) algorithm is the most widely used algorithm to 
compute the estimated regression coefficients for MLR. 

The Soil Moisture regression model was calibrated globally with the use of all 107 
samples, using the first 5 Principal Components of the Landsat 8 mosaic as trend 
predictors. The MLR model was evaluated with a Leverage Correction validation 
method, an alternative to the Leave-One-out Cross Validation. 
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The leverage of an object, a sample or a variable, describes its influential X-“uniqueness” 
or its actual contribution to the calibration model. A leverage close to zero indicates that 
the corresponding sample or variable had very little importance for the calibration 
model. 

For MLR, sample leverages are computed according to the following equation: 

ℎ𝑖 =
1

𝐼𝑐
+ 𝑥𝑆,𝑖

𝑇 (𝑋𝑠
𝑇𝑋𝑠)−1 𝑋𝑆,𝑖   , 𝑖 = 1, … , 𝐼𝑐 

The validation method Leverage Correction uses the leverages to estimate the 
prediction error without actually performing any predictions. The correction is done by 
correcting the y-residuals f with the sample leverage hi: 

𝑓𝑖𝑗
corrected =

𝑓𝑖𝑗

1 − ℎ𝑖
 

The results on the calibration and validation sets may be found in Table 2-27, where a 
complete analysis of variance (ANOVA) table is presented. 

 
Table 2-27. Anova Table for the soil moisture regression 

Anova Table 

Multiple Correlation 0.757 (cal) 0.727 (val)   

R-Square  0.573 (cal)  0.527 (val)  
 

  

RMSE 3.4393 (cal) 3.6100 (val)   

  SS df MS F ratio p value B-coefficients STDerr 

Summary               

Model 13590.14 5 2718.0280 216.7360 0.0000     

Error 1040.88 83 12.5410         

Total 14631.02 88 166.2620         

Variable               

Intercept 0.00 0       0.0000 0.0000 

L8_PC1 518.53 1 518.5280 41.3480 0.0000 -2.3150 0.3600 

L8_PC2 288.39 1 288.3890 22.9960 0.0000 107.7300 22.4650 

L8_PC3 1268.05 1 1268.0500 101.1150 0.0000 -183.0750 18.2060 

L8_PC4 226.47 1 226.4710 18.0590 0.0000 141.9070 33.3930 

L8_PC5 97.69 1 97.6860 7.7890 0.0070 186.6690 66.8830 
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Figure 2-94. Scatter plot of predicted VS observed values -  Blue: calibration, Red: validation 

 

Soil Clay Content – GWR Model 

Geographically Weighted Regression (GWR) is a regression technique that extends the 
traditional regression framework by allowing the estimation of local rather than global 
parameters [57], [58]. In other words, GWR runs a regression for each location, instead 
of a sole regression for the entire study area. GWR is a useful regression model to work 
with non-stationary data. The term stationarity refers to relationships in which the 
influences of the independent variables remain constant over the dependent variable 
throughout time and space. On the other hand, local or non-stationary models (e.g. 
GWR) account for different responses in different parts of the study region that the 
independent variables produce over the dependent variable. In GWR, observations are 
weighted in accordance with their proximity to point i (determined by the kernel size). 
This ensures that the weighting of an observation is no longer constant in the calibration, 
but instead varies with i. As a result, observations closer to i have a stronger influence 
on the estimation of the parameters for location i. Basically, GWR uses a kernel (also 
called window or bandwidth) that moves over the study area and seeks to fit the best 
results for each subarea. 

Every single location within the study area has its own set of coefficients; this allows the 
model to produce an individual r2 value for each location. It is recommended to map the 
coefficients and r2 values to observe how the relationship between the dependent and 
independent/s variables fluctuates throughout the area under study. This procedure 
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also allows the user to observe how the predictive capabilities of the model vary across 
space. GWR also provides an overall R2 output value that can be compared to R2 values 
obtained from different regression models, such as Ordinary Least Squares (OLS), and a 
a t-score output. In this case study, further significant outputs were the regression 
residuals, and the Beta coefficient raster maps indicating the models’ spatial 
dimensions. The regression coefficients mapping allows for the creation of the global 
trend surface creation, and the kriging of the residuals allows for mapping the local 
second order spatial variability.  

GWR was performed on Soil Clay data using S2_PC1 and TWI as predictor variables giving 
a moderate goodness of fit of 53.1 % for the trend surface. 

 
Table 2-28. Results and parameters of the developed GWR model for Soil Clay Content 

Soil Clay GWR Model 

Predictors S2_PC1, TWI 

Bandwidth Kernel 57273.47 

Residual Squares 17439.98 

Effective Number 7.87 

Sigma 13.40 

AICc 952.09 

𝑅2 0.58 

Adjusted 𝑅2 0.53 

 

2.5.7.4. Development of geospatial maps  

As seen in Section 2.3, the use of geostatistical techniques, enables the creation of 
continuous raster layers incorporating the statistical properties of the measured data. 
Because geostatistics is based on statistical assumptions, these techniques produce not 
only prediction surfaces but also error, or uncertainty surfaces, giving an indication of 
how good the predictions are.  

In geostatistics, Kriging is a method of interpolation for which the interpolated values 
are modelled by a Gaussian process governed by prior covariances, as opposed to a 
piecewise-polynomial spline chosen to optimize smoothness of the fitted values.  

The basic idea of Kriging is to predict the value of a function at a given point by 
computing a weighted average of the known values of the function in the 
neighbourhood of the point. The method is mathematically closely related to regression 
analysis. Both theories derive a best linear unbiased estimator, based on assumptions 
on covariances, make use of Gauss-Markov theorem to prove independence of the 
estimate and error, and make use of very similar formulae. Performing Kriging 
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Interpolation with polynomial / regression modelled trend surfaces is mathematically 
identical to generalized least squares polynomial curve fitting. 

Kriging is divided into two distinct tasks: quantifying the spatial structure of the data and 
producing a prediction. Quantifying the structure, known as variography, is a procedure 
of fitting a spatial-dependence model to the data. To make a prediction for an unknown 
value for a specific location, Kriging will use the fitted model from variography, the 
spatial data configuration, and the values of the measured sample points around the 
prediction location. Arc GIS Geostatistical Analyst has many tools to help you determine 
which parameters to use and also provides reliable defaults that you can use to make a 
surface quickly. 

The geostatistical interpolation methods used in this study were, Simple Kriging of the 
Regression residuals. As already mentioned the mean/variance stationarity assumptions 
were satisfied, after the detrending via regression modelling of soil parameters on EO/ 
Terrain data layers. Geostatistical Interpolation Models were created for Soil Moisture / 
Soil Clay at the three sampling territories of Shkodra /Kukes/Pogradec. 

Before the production of the final interpolation surface, some idea of how well the 
model predicts the values at unknown locations must be known. Therefore, Cross-
validation helped to make an informed decision as to which model provides the best 
predictions. The calculated statistics serve as diagnostics that indicate whether the 
model and/or its associated parameter values are reasonable. The evaluation of the 
interpolation results of this study was acquired with the Cross-validation method.  
Consequently, each geostatistical model of Soil variable residuals, created for each 
sampling territory, was gridded into a raster layer (20 m pixel size for Soil Clay content / 
30 m pixel size for Soil Moisture).  The addition of the Regression Trend Surface with the 
Residual Surface gave the Soil Moisture/ Soil Clay map layers. 

 

2.5.7.5. Maps of soil moisture and clay content 

Soil Moisture 

The results of the Variography that took place in order to set up the Kriging parameters 
(nugget, sill, range) for the Soil Moisture interpolation of the regression residuals are 
shown in Table 2-29. The determination of the most suitable spatial lag, took under 
consideration the overall sampling distribution pattern (AvNN) as well as the Moran 
correlogram. Variogram behaviour was modelled after the exponential model, common 
in soil chemistry applications. As for the error diagnostics, the geostatistical model was 
evaluated for performance by the Leave One Out Cross Validation method and gave an 
RMSE of 2, 97, obviously enhancing, at the actual sampling locations, the global 
regression model. 
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Table 2-29. Results of the variography for soil moisture 

Soil Moisture Variography 

Lag Size (m) 1150 

Model Exponential 

Model Nugget Effect TRUE 

Nugget 0.179 

Anisotropy FALSE 

 Range (m) 9350 

Sill 1.12 

Model: 0,179*Nugget+1,12*Exponential (9350) 

Prediction Errors 

Samples  107 

Mean  0,00 

RMS  2.97 

Mean Standardized  0.11 

RMS Standardized  1.04 

Average Standard Error  2.85 
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Figure 2-95. Variography graph for soil moisture 

 

On the Variography graph presented in Figure 2-95, one can see the experimental and 
the modelled Variogram. The interpolation performance can be summarized in the 
cross-validation error statistics (RMS, RMS Standardized, Av. Standard Error), which can 
be found in Table 2-29. Finally, the Regression and Interpolation surfaces are added 
together. The spatial distribution of SM is presented on the Regression Kriging Map 
clipped on the field river basin borders. 
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Figure 2-96. Final map of soil moisture in the Drin Bruna River Basin 
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Soil Clay Content 

The results of the Variography that took place in order to set up the Kriging parameters 
(nugget, sill, range) for the Soil Clay Content interpolation of the regression residuals are 
shown in the table below. The determination of the most suitable spatial lag, took under 
consideration the overall sampling distribution pattern (AvNN) as well as the Moran 
correlogram. Variogram behaviour was modelled after the spherical model. As for the 
error diagnostics, the geostatistical model was evaluated for performance by the Leave 
One Out Cross Validation method and gave an RMSE of 8.45. 

 
Table 2-30. Results of the variography for soil clay content 

Soil Clay Content Variography 

Lag Size (m) 980985 

Model Spherical 

Model Nugget Effect TRUE 

Nugget 0.086 

Anisotropy FALSE 

Range (m) 5842 

Sill 1 

Model: 0,086*Nugget+1,018*Spherical (5842) 

Prediction Errors 

Samples 107 

Mean 0.253 

RMS 8.450 

Mean Standardized 0.110 

RMS Standardized 1.140 

Average Standard Error 4.730 
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Figure 2-97. Variography graph for soil clay content 
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Figure 2-98. Map of soil clay content in the Drin Bruna River Basin 
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2.5.8. Integration of soil maps to the myDEWETRA platform 

The Soil Moisture and Clay Content maps obtained by the application of all the steps 
describes above are available by selecting in the Toolbar of MyDEWETRA the Static 
section (see Section 2.2.4.3). 

When a user selects the Static section, the maps appear available by choosing between 
three different thematic criteria (for more details see Section 2.2.4.3) 

 Soil moisture, under which the user can select the map named Soil Moisture - 
Drin-Buna 

 Clay Content, under which the user can select the map named Clay content- Drin-
Buna 

 Drin Buna, under which both two maps are available. 

Every time one of this three layers is pulled on, the application uploads it in the Control 
Map. If the cursor is left on the name of the layer in the Layer List (top left of the screen) 
the user enables the tooltip function to open two windows: 

 the first one at the top right of the screen (Figure 2-99, panel A2 and B2) which 
shows the metadata of the layers, such as: 
- the name of the layer 
- the Layer description 
- the reference date 
- the initialization time of the run (if the selected layer is a model's output) 
- the Spatial aggregation (if enabled) 
- the validity interval (if it is a combined variable) 

 the second one is placed immediately to the right of the Layer List (Figure 2-99, 
panel A1 and B1) and shows the name of the layer, the date of initialization of 
the run (if the case) and/or the reference date. 
 

 
Figure 2-99. Visualization of the Soil Moisture Clay Content maps realized for the Drin-Buna and 

valid on the period from 15/7/2017 to 4/8/2017. 

Clicking on one of the points of the maps, a pop-up screen appears on the left on which 
is reported the value of that point (Figure 2-100, panel A2- A1). 
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The values in the Soil Moisture map are expressed in [%] with a range (0-100) as they 
were measured in situ and consequently in the lab: the color bar used for low values of 
soil moisture hot colors and for high values of soil cold colors. 
The values in the Soil Moisture map are expressed in [%] with a range (0-100) as they 
were measured in situ and consequently in the lab: the color bar used for low values of 
soil moisture hot colors and for high values of soil cold colors. 
The values in the Soil Clay Content map are expressed in [%] with a range (0-100) 

as they were measured in the lab.: the color bar used for low values of soil clay light 
colors and for high values of soil clay orange colors. 

 
Figure 2-100. Visualization of the Soil Moisture Clay Content maps realized for the Drin-Buna 

and valid on the period from 15/7/2017 to 4/8/2017. 

2.5.9. Application of EO time-series data to the hydrological model 

Herein, we propose a comparison between modelled soil moisture and satellite soil 
moisture, and a possible use of the clay content map to evaluate hydrological model’s 
parameter. 

If soil moisture maps are developed in sequential and successive time periods and thus 
constitute a time-series of EO data, they could be applied to the hydrological model in 
order to improve its accuracy and robustness. 

On the Drin-Buna catchment the Flood-PRObabilistic Operational Forecasting System - 
Flood-PROOFS - [59] is implemented. It is a system designed to assist decision makers 
during the operational phases of flood forecasting, nowcasting, mitigation and 
monitoring. The hydrological core of the system is the Continuum model. 
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Figure 2-101. River sections on the Drin-Buna river in which discharge outputs of the flood 
forecasting chain are available. 

Continuum is a continuous distributed hydrological model that relies on a morphological 
approach, based on drainage network components identification [60], [61]. These 
components are derived from DEMs. The DEM resolution drives the model spatial 
resolution. Flow in the soil is divided firstly into a sub-surface flow component that is 
based on a modified Horton schematization (see [62] for details) and that follows the 
drainage network directions; and secondly, into a deep flow component that moves 
following the hydraulic head gradient obtained by the water-table modelling. The 
surface flow schematization distinguishes between channel and hillslope flows. The 
overland flow (hillslopes) is described by a linear reservoir scheme, while for the channel 
flow (channel) a schematization derived by the kinematic wave approach is used [63], 
[64]. The energy balance is solved explicitly at cell scale by means of the force-restore 
equation, that allows having the LST as a distributed state variable of the model (e.g. 
[65]–[67]). The snow accumulation-melting module is a simple model that is derived 
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from commonly used equations ([68]) and it is forced by meteorological observations. 
The mass balance is applied at cell scale for the entire domain of the model, so that a 
snow cover map can be generated with the same resolution of the DEM. The energy 
balance and, as a consequence, the evapotranspiration is inhibited for those cells where 
snow cover is present. The applied approach is very simple and neglects the heat 
exchanges between the soil and the snow cover, but it is generally sufficient if the goal 
is the estimation of the snow contribution to the runoff. The precipitation is partitioned 
into solid or liquid if the air temperature is below or above a fixed threshold [69]. For 
further details on the model please refer to [23], [69].  

Continuum model needs input of: precipitation, air temperature, wind speed, shortwave 
radiation, air relative humidity. It can consider the presence of reservoirs and 
hydroelectric infrastructures. 

The Continuum model is implemented on the Drin-Buna catchment on a regular with a 
spatial resolution of 350 meters and 3-hour time step. It gives the temporal evolution of 
the discharge in different river sections and the spatial and temporal evolution of the 
distributed soil moisture.  

The meteorological inputs of the hydrological model are furnished by the meteorological 
model COSMO-I7. Unfortunately, no observed meteorological data, from ground 
stations, are available. Moreover, the Drin-Buna catchment is characterized by the 
presence of large hydroelectric infrastructures, mainly dams. The dams are modelled 
within the hydrological model but information about the maneuvers performed on the 
dams’ reservoirs for energy productions are not available. Also observed discharge is not 
available. These are main limitations of this implementation that prevent an assessment 
of the performance of hydrological modelling. 

For the time period in which the measurements of soil have been realized from 16 July 
2017 to 04 August 2017 the hydrological model has been run and discharge and soil 
moisture computed. The soil moisture derived from satellite analysis can be considered 
as a mean value on the time period; the mean map from Continuum model has been 
computed, in Figure 2-102 the comparison between satellite and modelled soil 
moisture. Modelled soil moisture is drier in comparison to the satellite one as can be 
see also from the pdf of the soil moisture values (Figure 2-103). The Mean Absolute Error 
(MAE) between the two maps is 0.174 and the Root Mean Square Difference is 0.048. 
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Figure 2-102. Comparison between satellite soil moisture (upper panel) and modelled soil 
moisture (lower panel) – soil moisture is represented as saturation degree with values in [%]. 

Unfortunately, during the project implementation it was not possible to assimilate the 
satellite-derived soil moisture map in the hydrological model because to do so it is 
necessary to develop a time series of satellite soil moisture maps in order to evaluate 
the statistics of the observation and implement a bias correction procedure to allow the 
hydrological model to use the satellite information. More details of the procedure that 
can be applied to integrate hydrological modelled and satellite soil moisture information 
can be found in [70]–[72]. 
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Figure 2-103. Pdf of the satellite and modelled soil moisture (as saturation degree). The lower 

panels are a zoom of the upper ones. 

As described in [62] the Continuum model has one parameter, named ct, that represent 
the soil field capacity and can be evaluated using soil texture maps. In the actual version 
of the model the ct is equal to 0.4 (for each point of the basins). Using the clay content 
map produced within the project it has been evaluated equal to 0.53. considering the 
mean value of this parameter for each soil type that are in ctSand = 0.2, ctClay = 0.7, ctSilt = 
0.4. 

𝑐𝑡 =
∑ 𝑃𝑖

3
𝑖=1 ∙𝑐𝑡𝑖

∑ 𝑃𝑖
3
𝑖=1

  

in which Pi is the percentage corresponding to the type of soil i (sand, silt, clay). 

The hydrological model with the new value of ct has ran in the period of interest, Figure 
2-104 shows the comparison between the results with the standard parameter and the 
value estimate using the clay content map. The differences between the two simulations 
are about 4%, unfortunately no observed discharge is available to evaluate the 
improvement of model performance.  
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Figure 2-104. Comparison between the modelled discharge in different section of the Drin-Buna 

river using the standard parametrization of the model (continuous line) and the ri-
parametrization using the clay content map (dotted line) 

2.6. Training sessions and webinars 

One of the most important aspects of the pilot action is the transfer of knowledge and 
expertise with regards the use of EO data to all the countries and partners in the region. 
While all partners participated in the collection of the physical soil samples (see Section 
2.1.4), the spectral measurements (see Section 2.1.3) were conducted by only two 
partners, namely i-BEC and TAU, who owned the two spectrometers and were prior to 
this project sufficiently equipped and trained for the spectral acquisitions and 
standardization processes. Additionally, a number of partners had no previous expertise 
or knowledge with the development of spectroscopic multivariate calibration 
approaches or the application of machine learning algorithms in general (see Section 
2.3). To overcome this discrepancy of expertise and to bring the rest of the partners up 
to date with the current state of the art that was applied during the project 
implementation in the regional soil spectral library, several knowledge transfer actions 
were conducted. More concretely, in addition to the meeting and discussions held 
among all partners involved in this task during the second Project Meeting, and to the 
material distributed to them, during the course of the task’s execution the following 
actions were done: i-BEC and TAU organized two separate webinars (conducted 
electronically with all partners being invited), and two training sessions - one in Greece 
for the partners from the Balkans & Egypt, and one in Israel for the partners from Turkey, 
with the physical presence of representatives from each partner (Table 2-31). The 
training sessions involved the training of the partners to the processes of physical 
sample collection, sample preparation, spectral acquisitions, spectral standardization 
processes, and development of machine learning algorithms. In the following 
subsections, the webinars and training sessions conducted are described in detail. 
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Table 2-31. Overview of the knowledge transfer actions conducted 

What Where Hosted by Attended by 

Project Meeting 2 Limassol CUT All partners 

Webinar 1 Web meeting i-BEC and TAU CEDARE, CUT, 
INCA, IPB, SRTI, 
USCM, UZAY 

Webinar 2 Web meeting i-BEC and TAU CEDARE, CUT, 
INCA, IPB, SRTI, 
USCM, UZAY 

Training session 1 Greece i-BEC INCA, IPB, SRTI, 
USCM 

Training session 2 Israel TAU UZAY 

 

2.6.1. Webinar #1 – Soil spectroscopy 

The first webinar’s main topic was to present a detailed overview of soil spectroscopy. 
In particular, it covered some introductory information regarding soil science (soil 
mineralogy, composition, texture, importance in agriculture and food security) and the 
principles of spectroscopy in general (electromagnetic spectrum, reflectance / 
absorbance/ emission, absorption bands in elements and molecules), and soil 
spectroscopy in particular (chromophores, various forms of spectroscopy, point 
spectroscopy, imaging spectroscopy, sample preparations and spectral acquisitions, 
importance of standardization and validation, steps to apply standardization). Thus, its 
main goals were to cover the following areas: 

 Key elements of soil science and the importance of soils in agriculture 

 Basic principles of spectroscopy 

 Application of spectroscopy in soil science 

The form of presentation was an oral presentation. The main speaker during this 
webinar was Prof. Eyal-Ben Dor from TAU who is an expert in soil spectroscopy. Prior to 
the webinar the presentation as well as some supplementary material was handed out 
to all participants. The webinar was recorded and uploaded in the shared folder where 
every partner has access to; thus, every partner can revisit the webinar at any time. 
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2.6.2. Webinar #2 – Machine Learning 

This webinar focused on how the processing of the primary source of information that 
is the spectral signature of each soil is achieved through the means of machine learning 
(ML) algorithms. The main themes of it were: 

 Introduction to ML – Classification and Regression 

 Validation of models in ML – avoiding overfitting 

 Handling of big data – on the curse of dimensionality 

 Introduction to the R programming language 

 Developing proper spectroscopic models for the prediction of soil properties 
using the R language 

 Variable importance – identifying significant wavelengths 

 Up-scaling of models for EO data 

The webinar was conducted as an oral presentation and as a hands-on experience on 
building the models, since participants were encouraged to follow the speaker and 
execute the software code presented to them during the webinar on their machines. 
Prior to the webinar the presentation as well as the necessary software was distributed 
to all the partners. The webinar was recoded and uploaded in the shared folder, so that 
every partner might be able to download it and re-watch it whenever they deem fit. 

 

2.6.3. Training session in Greece 

A training session was held in the premises of i-BEC in Thessaloniki, Greece, on June 1st 
of 2017. The partners from the Balkans and Egypt (namely CEDARE, INCA, IPB, SRTI and 
USCM) were invited to Thessaloniki to gain a hands-on experience in soil spectroscopy. 
The goal was that at the end of this training day the participants would have been able 
to: 

 Operate a spectroradiometer and be able to acquire soil spectra in the laboratory 
as well as in situ 

 Follow a specific measurement protocol to minimize the errors during the 

measurement 

 Be able to standardize the soil spectra 

 Understand how to catalogue and archive soil spectral measurements 

 Be able to identify potential problems during the measurements and the first 

steps of spectral processing 

 Have all the know-how and tools to apply this to create their country’s soil 

spectral library 

A total of 11 participants travelled to Thessaloniki for the training day and attended the 
session (Figure 2-105 and Figure 2-106). The training day be ginned with a few short 
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presentations of what was about to unravel and continued with the presentation of the 
measurement protocol for the acquisition and debugging of laboratory measurements. 
The participants then had a chance to put the protocol into practice, and after a brief 
demonstration of the instrument and the process, all participants had a chance to 
operate the instrument and record soil spectra from the soil samples they contributed 
to the GEO-CRADLE SSL. A presentation of the standardization procedure then followed, 
and the participants all applied it on a personal computer. Finally, in-situ measurements 
were conducted to demonstrate how this process can work on the field in real-life 
conditions. 

 
Figure 2-105. Professor G. C. Zalidis of i-BEC welcomes the participants to the training day and 

briefly describes the schedule of the day 

The participants were given detailed hard copy and electronic copies of instructions and 
protocols to follow during the spectral acquisitions. Additionally, the necessary tools 
needed to automate part of the standardization procedure was given to them. 
Moreover, contact details of the people in possession of the internal soil samples were 
given to them (see Subsection 2.1.3 for more details). They were thus equipped with all 
the tools and means necessary to apply this knowledge to their area. 
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Figure 2-106. Group photo of the participants to the training day and the involved i-BEC staff 

 

2.6.4. Training session in Israel 

The Remote Sensing Laboratory hosted a 3 days training session in April of 2017 with 
the participation of three colleagues from UZAY. The objectives of the training session 
were similar to the one hosted in Greece: 

 Deliver the knowledge of how to perform soil sampling and use it in real-world 
conditions 

 Prepare soils samples for spectral measurements 

 Operate a spectroradiometer and be able to acquire soil spectra under various 
setups 

 Follow a specific measurement protocol ensuring the minimizations of errors 

 Standardize the soil spectra 

 Be able to identify potential problems during the measurements 

 Have all the know-how and tools to apply this to create their country’s soil 

spectral library 

After the training session ended and participants left back to Turkey, they started 
performing their own soil survey and collecting samples from various locations in 
Turkey. Subsequently, they could apply their knowledge and experience on how to 
perform spectral measurements using a specific protocol.  

Few months after the training session, UZAY shared their excellent work of the soil 
spectral library in order to be included in the GEO-CRADLE database. 
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Figure 2-107. Members of UZAY in Israel performing soil surveys and spectral measurements 

 

2.7. Brief overview of the outcomes 

On the whole, the task succeeded at disseminating the existing state-of-the-art 
knowledge and essential tools needed for the use of open Earth Observation data for 
the benefit of food security and water extremes management. Through a series of 
lectures, meetings, webinars, hands-on demonstrations, training days, dissemination of 
software, and real-world application of the above the partners tested their new 
expertise. The culmination of this process was the establishment of the regional SSL 
which covers a previously underrepresented region (as depicted in Figure 2-52), in 
addition to a web-GIS platform for the integration of EO data with datasets stemming 
from other sources. The open, expandable, standardized SSL and the myDEWETRA 
available platform are available for end-users and researchers alike and can serve as a 
stepping stone for the successful uptake of EO technologies in the region. The case study 
considered covered a real-world application of these  
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3. Analysis of the pilot implementation 

3.1. Successes and positive outcomes 

3.1.1. The regional soil spectral library in an under-represented area 

The regional vis-NIR soil spectral library that was developed during the project’s 
implementation is a significant contribution to the LUCAS – European Soil Database and 
will support future soil mapping activities in the Balkan, Middle East, and North Africa 
regions. 

The development of SSLs is still not adequately taken up or is completely lacking in 
several Balkan countries according to the LUCAS version that released in 2015. At a first 
glance the GEO-CRADLE SSL facilitated sampling and a further development and 
expansion of the LUCAS - European Soil Database in the region of Balkans by around 
200%; it further includes samples from Albania, FYROM, and Serbia for the first time (i.e. 
these countries are not represented in none of other SSLs). In addition, the IFS pilot laid 
the foundations to create a database with standard soil properties (a similar procedure 
to the one used for LUCAS), for Northern Africa and Middle East countries for the first 
time. These efforts aim to kindle a new interest in these regions in the applications of 
soil spectroscopy and highlight their impact for the region. 

Such a regional approach can maximize the innovation potential by exploiting the 
multiple research and operational assets in the soil spectroscopy domain to effectively 
develop appropriate national database infrastructures. The results of these activities 
should not only contribute to climate change mitigation and adaptation actions and but 
also consider the ongoing work on Sustainable Development Goals implementation 
(monitoring and reporting obligations). For instance, SSL and advanced machine learning 
algorithms that are provided by GEO-CRADLE Data Hub could be potentially utilized as 
key tools to monitor soil organic C stocks for accounting purposes, for monitoring and 
reporting SDGs (e.g. SDG 15.3) and be important contributors to the adoption of best 
agronomic and site specific reduced input practices, in a region that faces the first signs 
of climate change. 

Additionally, the GEO-CRADLE SSL is a strong base for the forthcoming hyperspectral 
remote sensing of soils from space. Whereas modern satellite imagery can be 
characterised as super-spectral, in the future at least five equipped with hyperspectral 
imagers are due to be launched: the German Environmental Mapping and Analysis 
Program (EnMap), the Italian PRecursore IperSpettrale della Missione Applicativa 
(PRISMA), the U.S. NASA Hyperspectral Infrared Imager (HyspIRI), the Japanese 
Hyperspectral Imager Suite (HISUI), the Israeli Hyperspectral imager (SHALOM), and the 
China Commercial Remote-sensing Satellite System (CCRSS). It might then be used for 
enhanced applications in support of the future Copernicus satellite program in support 
of Copernicus Land Monitoring program. Last but not least it can be considered as a 
significant contribution to Copernicus in-situ component in a region with well recognized 
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gaps. Finally, the SSL supports regional contribution to global soil mapping activities and 
other regional Global Earth Observation System of Systems (GEOSS) hubs.   

3.1.2. The open myDEWETRA platform 

The myDEWETRA platform integrates data and models from heterogenous sources, 
allowing their easy and effortless visualization and manipulation. The system is a web-
GIS platform aimed to multi-risk mapping, forecasting and monitoring. Using the tools 
of the platform it is possible to aggregate data both in a temporal or spatial way and to 
build scenarios of risk and damage. Through its web-interface, it allows any computer 
or device connected to the internet to visualize open geospatial and EO data, as well as 
link applications to the platform. Its ability to seamlessly integrate models (e.g. for 
weather, flood, or drought forecasting) enables the continuous monitoring of the RoI, 
which is so susceptible to water extremes. 

The combination and integration of EO data to the platform, and the utilization of a 
protocol as the one detailed in Section 2.5.9, enables future researchers and end-users 
alike to utilize this open platform for the modelling of extreme water phenomena. 

3.1.3. Outcome of the feasibility study in the Drin river basin 

The feasibility study highlighted the potential of the pilot activities to offer novel Earth 
Observation services to a region largely impacted by endangered food security and 
water extremes. The target area is an important regional basin, on which approximately 
1.5 million people rely on for drinking water, agriculture, fisheries, industry, and 
hydropower. In this context, the utilization of Earth Observation for the conservation 
and monitoring of soil resources, as well as for the continuous monitoring and risk 
assessment of water extremes phenomena of utmost importance for the regional 
economy. The myDEWETRA platform provides a platform for the effortless integration 
of Earth Observation data, which can assist users with limited knowledge in GIS systems 
to utilize and explore such datasets. In addition, the visualization of other ancillary data 
and information is another asset of the tool. 

One of the key aspects of the pilot activity was the application of the regional SSL to 
transform raw Earth Observation data from satellites to end-user services. In particular, 
maps of two key parameters (i.e. soil moisture and clay content) were developed 
through a combined synergy of laboratory soil spectral and spectral data recorded from 
the satellites. This repeatable procedure drives down the time taken and the cost of the 
contemporary approaches, without sacrificing the predictive accuracy. The developed 
maps were then integrated into the myDEWETRA platform which is capable of 
supporting the users in comparing these maps with the hydrograph produced by the 
hydrological models. 
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3.2. Identification of weaknesses 

3.2.1. Shortcomings and potential inhibitors 

3.2.1.1. Insufficient sampling 

Despite the fact that a large number of soil samples were collected to populate the 
regional SSL, some areas are still under-represented or not sufficiently sampled. For 
example, Egypt is only represented using 10 soil samples, while Greece, despite being 
the largest contributor to the SSL, is only represented by one administrative region in 
the mainland. Accounting for the spatial diversity is also not enough; soil samples should 
not only cover larger regions, but also sample them adequately to cover the soil type, 
mineral, and chemical diversity present in the lands. This proper statistical sampling is 
significant to ensure that the data can be used throughout the whole region. 

Moreover, as detailed in previous sections, the reason that some countries are not 
adequately represented in the GEO-CRADLE lies in the fact that the project partners 
could not perform the spectral measurements themselves (see also the following point) 
and were unable to acquire licenses to transfer a large number of soil samples abroad. 

3.2.1.2. Lack of capacities in some countries 

Although an important step was made in building the capacity in some countries, that 
had no prior knowledge or expertise in soil spectroscopy (but had only in soil science), 
some partners are markedly lacking in some important tools needed to further populate 
and extend the SSL. The most important thereof is that out of the around 9 partners, 
only 3 possess a spectroradiometer in the vis-NIR range, namely i-BEC, TAU, and UZAY. 
As seen in Section 2.5, to effectively use the SSL with EO data, a pre-requisite is to use a 
spectroradiometer to measure the newly collected soil samples so that their properties 
are extracted. Therefore, ownership of such an instrument is a strong asset, as otherwise 
the scientists will have to resort to sending the soil samples to other laboratories / 
institutes that possess one, which may delay or hinder the full exploitation of the SSL. 
As note in the previous point, shipping the soil samples to laboratories in other countries 
may prove to be a laborious task, since a number of official permits might be needed to 
be acquired. 

3.2.1.3. Future proofing the SSL 

A potential inhibitor lies in future-proofing the SSL. Although the GEO-CRADLE SSL is 
open and expandable, it must be ensured that the partners, research institutes, and 
universities will contribute to it in the future and maintain it. With its open standards, 
succinct and precise protocols, the GEO-CRADLE SSL should be seen as a starting point 
for new researchers entering the domain of soil spectroscopy, and not be neglected. 
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3.2.2. Mitigation strategies 

3.2.2.1. Accounting for the insufficient sampling 

Despite this appearing to be an important inhibitor, it should be underscored that 
sufficient sampling is a monumental task that is laborious and requires significant 
funding. While some regions and areas appear to be underrepresented, the knowledge 
gained during the realization of this task allows  

Although some countries are underrepresented in this library, this does not imply that 
there still exists a potential to be unlocked concerning their more pronounced 
representation. For example, Egypt and Serbia actually have detailed and large soil 
libraries comprised of physical soil samples and their respective physical and analytical 
chemical measurements; thus, it is very possible in the future to expand the SSL with 
little effort (in comparison to actually having to perform new soil sampling campaigns 
and the respective analyses). 

Moreover, through networking and dissemination activities it is possible to collaborate 
with more researchers who might be willing to contribute to the regional SSL. Through 
the establishment of such collaborations it is possible to extend the SSL in other areas. 

 

3.3. Conclusions and future considerations to address the regional 
challenges 

The overarching objective of the IFS-WEM pilot was directly tied with and driven by the 
GEO’s vision stated in the GEO Strategic Plan 2016-2025: Implementing GEOSS, a set of 
reference EU Strategies (e.g. LULUCF, CAP) and the recently agreed international 
commitments with regards to sustainable development (e.g. the 2030 Agenda for 
Sustainable Development). However, to realize its vision and maximize the benefits that 
EO can bring to users, a plan for longer term sustainability (beyond the life of the 
project) of the tools and services developed through IFS-WEM pilot should be 
elaborated in close coordination with key players of the relevant ecosystem. 

Due to its broad transnational membership (10 countries) and variety of contributing 
organizations (3 Universities, 8 Research Institutes), IFS-WEM team was able to 
assemble expertise and perspectives from across different disciplines and communities. 
In this context, IFS-WEM leveraged this convening power to define spheres of activity 
focusing on long term sustainability of IFS-WEM pilot. The penetration in private 
markets, further engagement with EO stakeholder communities (e.g. GEO Initiatives, 
Copernicus), capacity building among current and potential users, the boost of research 
development and uptake of the provided services and national database of in situ 
observations serving public government user needs lie at the core of longer term 
sustainability plan. Accordingly, 5 strategic objectives will guide the “S5 Objectives for 
Sustainable IFS-WEM Activities” beyond the project’s life time (Figure 3-1). 

https://www.earthobservations.org/documents/GEO_Strategic_Plan_2016_2025_Implementing_GEOSS.pdf
https://ec.europa.eu/clima/policies/forests_en
https://ec.europa.eu/agriculture/direct-support/greening_en
https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
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Figure 3-1. The S5 objectives for sustainable IFS-WEM activities 

The S5 Objectives, thoroughly outlined in sections that are mentioned below, builds on 
achievements from GEOCRADLE’s first implementation phase, such as: the development 
of Regional Data Hub; advances in the areas of national database infrastructure 
development and data access; gains in regional coordination (e.g. workshops), research 
and innovation; and the establishment of a diverse and substantial stakeholder-driven 
network. In doing so, IFS-WEM team will achieve further improvements in the 
sustainability aspect by proposing a set of core activities which define and focus the 
scope of actions essential for the attainment of the S5 Objectives.  

3.3.1. Uptake by public domain 

The IFS-WEM pilot delivered to stakeholders, applications, services, data, information 
that generate social and policy value to the citizens of the RoI. Moreover, the IFS proved 
that has a broad pool of users from scientists to policy makers, and applications from 
map validation to modelling. For instance, changes in land and soil management at the 
farm level could be essential to address challenges emerged by climate change for the 
future capacity of agriculture.  

In this line IBEC, in close collaboration with the JRC European Soil data Centre and other 
relevant partners (TAU), would take the lead in providing GEOCRADLE soil sampling data 
and IFS findings to the ‘Land Use/Cover Area frame statistical Survey Soil’ (LUCAS Soil). 
The proposed activity surely ensures the sustainability of the IFS findings. Moreover, the 
IFS-WEM pilot study can be leveraged as a technical roadmap with well-defined 
methodologies and user oriented services to reinforce the interest of decision makers, 

http://datahub.geocradle.eu/
http://datahub.geocradle.eu/dataset/regional-soil-spectral-library
http://geocradle.eu/en/news-events/events-corner/
http://geocradle.eu/en/resources/publications/
http://geocradle.eu/en/resources/publications/
http://geocradle.eu/en/tools/networking-platform/
http://geocradle.eu/en/tools/networking-platform/
https://esdac.jrc.ec.europa.eu/projects/lucas
https://esdac.jrc.ec.europa.eu/projects/lucas
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paving the floor to new EO demands. The national focal points of IFS-WEM pilot could 
act as the ambassadors of the activities aforementioned in national level. 

3.3.2. Private Sector Engagement 

As it is already mentioned, IFS-WEM pilot was constructed around a set of reference EU 
Strategies that allow yielding significant business benefits for the parties involved. In 
particular, Regional SSL, Mydewetra and networking platform offer unique information 
and engagement opportunities to the private sector to serve their needs in areas such 
as agriculture and water extremes management (e.g. insurance sector). They benefited 
through the access to new types of data, covering new areas, as well as broader 
community networks. 

However, to promote business impacts a socio-economic value analysis (possibly 
through value tree analysis for IFS- WEM) should be conducted supporting outreach 
activities and providing impetus to the business development surrounding the uptake 
of Copernicus, GEOOS and IFS-WEM findings. 

3.3.3. Capacity Building 

In order to maximize the use and impact of the IFS-WEM solutions, an EO Capacity 
Building Program for the adoption of IFS-WEM components (e.g. Regional SSL, 
Mydewetra, machine learning models) was developed during the WP4’s lifetime, to 
strengthen participants' knowledge and capabilities (see description of Section 2.6). 
However, i-BEC’s challenge, was not only to train the GEOCRADLE’s partners but also 
establish a mechanism that will keep participants’ (incl. potentially new additions) 
knowledge and capabilities sharp and after the project. 
The current mechanism addresses the following three pillars: 

 Infrastructure development by offering a) a concrete methodology (see 
Appendix A) and a standardization protocol for the development of national 
database of in situ soil – spectra data able to be implemented in the EUROGEOSS; 
b) easily deployable models for EO applications. 

 Human capital development by offering and operating a set of supporting and 
communicating tools (integrated in the GEOCRADLE Data Hub) that will facilitate 
the flow of the data, information, knowledge, products and services needed for 
integrated use across multiple communities. 

 Organizational Development supported by IBEC/TAU feedback system aiming at 
a) supporting continuous learning (e.g. modules, inclusion of lessons to 2 Greek 
University Laboratories via Copernicus Academy) and update the best practices 
knowledge base (e.g. publications, new models etc.), b) consultancy of relevant 
stakeholders in adopting the appropriate infrastructure and tools on ways of 
improving their workflows and services. As a key success story we should 
highlight that the Laboratory of Remote Sensing and GIS of School of Agriculture 
(Greece) integrated the IFS results into its research programs and integrate it 

http://datahub.geocradle.eu/dataset/regional-soil-spectral-library
http://geocradle.mydewetra.org/
https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1148291?journalCode=tres20
mailto:tsakirin@auth.gr
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into its curriculum and finally was renamed as Laboratory of Remote Sensing, 
Spectroscopy and GIS. 

3.3.4. Extended Participation 

The wide adoption of IFS-WEM components also includes engagement actions to attract 
extended participation of relevant communities in different countries in the RoI or key 
players wishing to join forces (and/or vice versa) towards realizing GEOSS and 
Copernicus vision. 

In this line, IBEC envisages to expand the Regional SSL in other countries, especially 
those of African territory to support implementation of the EU-Africa R&I Partnership 
on FNSSA via a diverse open database of agricultural soils information and 
corresponding EO services. IBEC and NOA have already performed concrete activities in 
order to expand Regional SSL with sampling points from Tunisia (upcoming ICOSS2018). 
In the light of the above, synergies with future project funded under H2020 topic SC5-
15-2018 and SFS-35 2019B can be explored. 

A key tenet of IFS-WEM vision is that EO data should transformed into useable 
knowledge and information to serve societal needs and sustainable development goals. 
IBEC as GEO participating organization and contributor to EO4SDGs and GEOGLAM 
initiatives will convene key stakeholders across the provide-user spectrum (FAO) to co-
develop tailored spatially explicit indicators for addressing specific issues within the 
scope of monitoring and reporting SDGs and SBAs. Soil spectroscopy is widely 
recognized as a cost effective technique for measured SOC content and therefore the 
Regional SSL may be utilized to report SDG target 15.3.1 as it is stated in the recent 
released Good Practice Guidance for SDG Indicator 15.3.1. 

Last but not least, i-BEC paves the way to create a community of knowledge exchange 
to encourage the interactive sharing of knowledge and best practices between 
international recognized experts. To that end, building synergies with research 
international research consortiums (CIRCASA) lies at the core of IBEC’s activities in order 
to explore the mutual benefits of a joint collaboration. Furthermore, IBEC fosters 
strategic partnerships such as with the Global Partnership for Sustainable Development 
Data.  In particular, the outcomes of IFS pilot are communicating to a wider audience in 
order to promote best practices and tools to better monitor progress towards 
sustainable agriculture and natural conservation (see here). 

Overall, IFS pilot mobilized actions to mitigate in situ gaps by empowering national focal 
points to develop their own contributions of EO resources to GEO and Copernicus in situ 
component.  

3.3.5. Boost Research and Science Development 

From the beginning of the project IBEC, CIMA and NOA recognized that IFS-WEM was 
not a purely coordination endeavor since it required technical capacities (predicting 
algorithms, serving platforms) to provide information in support of science-based and 

https://ec.europa.eu/research/iscp/pdf/policy/eu-africa_research_innovation_relations_factsheet_en.pdf
https://ec.europa.eu/research/iscp/pdf/policy/eu-africa_research_innovation_relations_factsheet_en.pdf
http://geocradle.eu/en/icoss-tunisia/
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc5-15-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sc5-15-2018.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/sfs-35-2019-2020.html
https://www2.unccd.int/sites/default/files/relevant-links/2017-10/Good%20Practice%20Guidance_SDG%20Indicator%2015.3.1_Version%201.0.pdf
https://www.circasa-project.eu/
http://www.data4sdgs.org/
http://www.data4sdgs.org/
http://www.data4sdgs.org/partner/interbalkan-environment-center
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data driven decision making. IBEC, TAU and CIMA inspired by the initial ambition of the 
IFS-WEM pilot and taking into account the global trends in spectroscopy (both space 
borne and in situ) and recent advances in machine learning technologies envisaged to 
further promote basic and applied research (e.g. reviewing existing international 
frameworks) in the areas of the integrated use of remote sensing, and ICT techniques 
for monitoring the environment (soil and water resources). 

The Open Data Commons Open Database License (ODbL) that have been adopted by the 
regional SSL make it as a valuable source for open, reliable data and information for the 
academic community. This state can maximise the innovation potential by exploiting the 
multiple research in soil spectroscopy domain to effectively monitor soil organic C stocks 
for accounting purposes and be contributor to the adoption of best agronomic and site 
specific reduced input practices. To that end, based on the initial findings of IFS for the 
region of our interest there is a need to develop synergies on research at global level in 
order to further: 

 promote guidance on these specialized topics by offering the regional SSL for 
research purposes as a part of the Global Soil Spectral Library (GSSL). It should 
be noted that till now there are well reported gaps for the RoI of IFS in the GSSL. 

 Utilize IFS tools and findings to improve the understanding of agricultural soil 
carbon sequestration in these diverse pedoclimatic conditions (synergies with 
CIRCASA). 

Future efforts could be focussed on whether GEOCRADLE findings can be generalized to 
other soil attributes (bulk density), and micronutrients, and how this approach could be 
combined with spectra data recorded by proximal soil sensors (relevant work is going to 
be presented in 21st World Soil Conference). In addition, an analysis of heavy metal 
content, via national funded projects, in selected sub-samples is proposed to assess the 
risk of soil contamination in order to serve in the priorities highlighted be well 
recognized organizations such as FAO (Global Symposium on Soil Pollution). 

The core functions to achieve IFS-WEM overall vision drive the implementation of the 
aforementioned objectives and are summarized in Figure 3-2.  
 

http://opendefinition.org/licenses/odc-odbl/
https://www.sciencedirect.com/science/article/pii/S0012825216300113
http://www.21wcss.org/
http://fao.msgfocus.com/q/13VkJaDO4weyK7TPqDzml/wv
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Figure 3-2. Core functions for the implementation of sustainability plan 
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Appendix A 

A protocol and instructions on how to establish a SSL by Ogen Y. and Ben-
Dor E. (Tel Aviv University, The Remote Sensing Laboratory) 

Preface 

Soil spectral library (SSL) becomes a very important issue in all domains (local, regional 
and global) (Viscarra et al. 2016). The SSL is used to generate predictors for many soil 
attributes using a chemometric approach and has a vast potential in precision 
agriculture activities, ranging from ground to space domains. As growing activity in this 
direction has been taking place worldwide, it is important to establish a standard 
protocol on how to build such a SSL. This is in order to allow in the future better 
collaboration with other colleagues as well as to enable smooth and correct merging of 
SSLs from various sources. 

Introduction 

The following document provides a protocol for building a Soil Spectral Library (SSL). The 
protocol covers how to plan and collect the samples, the sampling procedures followed 
by the spectral measurements and the analyses of chemical-physical attributes. A 
special attention is given to the physical construction of the library and how to store soil 
samples for future utilization.  

 

1. Project planning and samples collection 

Building SSL requires a prior planning in order to sample different soil types from diverse 
locations and also collect the samples from various land uses and horizons. There are 
two parallel ways to acquire the samples: self-field sampling and samples collection from 
existing (pedologic) research laboratory (take-away method). If a self-field sampling is 
required, start at 1a. If you are familiar with laboratories or organizations which hold 
soil samples, start at 1b. 

1a. Self-field sampling and procedures 
1. Use a local or national soils map (1:100,000 or 1:250,000 scales) and identify the 

distribution of the soil types (maintain a representative soil types sampling 

within the study area). It is highly recommended to work with a professional soil 

surveyor and include a profile sampling.  

2. Make a list of all the soils starting from the most common ones to the less 

common. 

3. Mark the geographic locations for sampling on a map. if a certain soil type has a 

high spatial distribution, its samples should be collected from diverse locations 

as possible. 
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4. Organize sampling days to collect the samples together with the following items: 

 Soil map with the marked location 

 Global Positioning System (GPS) 

 Writing paper (for suggested format, see Table 1) and a pen 

 Shovel 

 Sampling spoon 

 Paper bags and a marker 

 Camera 

5. Collect at least a 150 g of soil sample for each horizon (surface or profile) and 

keep it inside a paper bag. 

6. For surface sampling: before sampling take a photo, sample the soil without 

debris. Describe the sample status and surrounding (moisture content, stones).  

7. Write the sample number on the paper bag. 

8. Fill in the table with the sample information. 

9. Continue to collect the samples and edit the table. 

10. Continue to section 2. 

 

Additional information can be found at: 
1. Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, Federico, Kilburn, J.E., and 

Fey, D.L., 2013, Geochemical and mineralogical data for soils of the 

conterminous United States: U.S. Geological Survey Data Series 801, 19 p., 

https://pubs.usgs.gov/ds/801/downloads/Appendix%201_NASGLP-Soil-

sampling-manual.pdf 

2. EuroGeoSurveys Geochemistry Working Group, 2008. EuroGeoSurveys 

Geochemical mapping of agricultural and grazing land soil of Europe (GEMAS) 

- Field manual. NGU Report 2008.038. Geological Survey of Norway, 46 pp. 

http://www.ngu.no/upload/Publikasjoner/Rapporter/2008/2008_038.pdf  

 

Table 1 

# Latitude Longitude Elevation 
(m) 

Depth 
(cm) 

Land 
use 

# of 
photo 

Remarks 

1 

       

2 

       

3 

       

4 

       

https://pubs.usgs.gov/ds/801/downloads/Appendix%201_NASGLP-Soil-sampling-manual.pdf
https://pubs.usgs.gov/ds/801/downloads/Appendix%201_NASGLP-Soil-sampling-manual.pdf
http://www.ngu.no/upload/Publikasjoner/Rapporter/2008/2008_038.pdf
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1b. The take-away method 
1. Do a desk work and make a list of soil surveyors and any laboratories who 

perform chemical-physical measurements on soils. 

2. Contact the laboratory, explain about the project and ask if they have any 

unneeded soil samples which have chemical-physical attributes together with 

coordinates data and additional meta data information. If so, ask permission to 

collect the samples. 

3. Collect the soil samples together with the necessary data (for details, see section 

4). 

4. Continue to section 2. 

 

2. Initial processing 

Before conducting any measurement, it is essential to perform the following steps: 
1. Dry the soil samples to room condition (provide the temp. and RH (%) in the 

room). 

2. Ground each sample to 2mm. 

3. Sieve (>2 mm) the soil sample and make sure you are left with at least 100 g of 

sample. 

4. Continue to section 3.  

 

3. Coding and maintenance 

Coding the samples is essential in order to keep track of the samples and find them easily 
in the database. The coding should be as follows: 

AA-BB-CCC-DDDDD 

AA – Country code 

BB – Serial number of the soil 

CC – Soil type (WRB) 

DDDDD – Sampling depth (3 digits - in cm) 

For example, the code IL-VR-030-00001 represent a Vertisol sample taken from a 30cm 
depth in Israel. 
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Consider establish a BARCODE system for the soil samples refereeing soil sample to the 
data basis.  

 

4. Spectral measurements 

Spectral measurements should be performed using any available reflectance 
spectrometer for the 400-2500nm. Provide the spectral resolution and sampling 
information. Use any protocol that assured by your laboratory (recommended in CSIRO 
protocol, Ben Dor et al. 2015). Make sure that your protocol will be composed of 
representative replications with SD less than 4% between each spectrum in a given 
sample. Convert sample reading to reflectance (either by white reference or any other 
method). All spectral measurements MUST be accompanied with using the internal soil 
standard as discussed in (Ben Dor et al. 2015).  

 

5. Chemical-physical attributes 

Chemical Physical attributes are essential part of the SSL, for that purpose each sample 
has to be accompanied with chemical-physical data after using "wet chemistry" using 
traditional and accepted methods. Please provide a reference to any method used. 
There are three obligatory attributes to any SSL. Additional attributes if available are 
welcome. The obligatory attributes are: Soil texture (sand, silt and clay distributions), 
Organic Matter (OM) and calcium carbonate (CaCO3). Highly recommended attributes 
are: Specific Surface Area (SSA), soil moisture, Cation Exchange Capacity (CEC), Free Iron 
Oxides (Fed), pH and Electrical Conductivity (EC).  

It is important to include in the physical-chemical data base the declared laboratory 
accuracy for every attribute. 

 

6. Additional data 

In addition to the soil attributes, it is important to include in the database other 
information which is needed in order to build a broad picture of the samples. This 
information includes: 

 Sampling date (DD-MM-YYYY format) 

 Data Source  

 Latitude and Longitude (decimal degree format) 

 Elevation above sea level (in meters) 

 Sampling depth (in cm) 

 Land use 

 Climate (according Koeppen classification) 

 Soil type (according the WRB and USDA) 
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 Photo of the sample 

 Spectrometer used and spectral its resolution  

An example of the database is given in Table 2. 

Table 2 

Serial Number 1 2 

Sample Code IL-VR-030-
XXXXX 

IL-AT-005-XXXXX 

Date of sampling 25.11.2015 29.07.2016 

Photo number 1 2    

Latitude 32.595561 33.879545 

Longitude 34.542354 36.544444 

Elevation (m) 40 350 

Depth (cm) 30 5 

Soil type (WRB) Vertisol Anthrosol 

Soil type (USDA) Vertisol Anthrepts 

Climate (Koeppen) BWh BWh 

Spectrometer ASD field spec 
Pro 

ASD field spec 
Pro 

Spectral resolution 
(nm) 

1 1 

   

OM (%) 2.8 3.2 

CaCO3 (%) 3.4 2.9 

Clay Fraction (%)  30 20 

Silt Fraction (%) 25 30 

Sand Fraction (%) 45 50 
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pH 7.5 6.8 

EC (μ/S) 2.8 8.6 

Soil moisture (%) 1.6 3.5    

350 0.049565 0.024690 

351 0.049565 0.024690 

352 0.048667 0.025166 

353 0.048166 0.025108 

 

7. Storage 

Samples should be stored inside a dry cool room in glass cans/jars along with their 
sample code. Samples should be organized in a way that they can be easily found when 
necessary.  
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