

Dynamical Solar Atlas of Egypt

Hesham El-Askary, PhD Geo-cradle Regional Coordinator CEDARE Chapman University Stelios Kazadzis, PhD Energy Thematic Area, Leader World Radiation Center, Switzerland

Panagiotis Kosmopoulos SENSE pilot Developer National Observatory of Athens

www.earthobservations.org www.geoportal.org

Momentum of this pilot study for Egypt

Solar Energy Nowcasting

Why the exploitation of Solar energy in North Africa and Middle East is critical?

They are places with a serious amount of solar energy potential and its exploitation is important for:

- Sustainable development through efficient energy planning
- Gradual independence from fossil fuels
- Here we introduce Solar Energy Nowcasting SystEm (SENSE) pilot with niche in:
 - Realistic assessment of solar potential
 - Being operational, satellite-driven providing real-time system
 - Quantifying the clouds' and aerosols' impact on the solar energy potential

@GEOSEC2025 www.earthobservations.org

The Solar Energy Nowcasting SystEm (SENSE)

Pilot study for Egypt

SOLAR ATLAS CLIMATOLOGY OF EGYPT (1999-2013)

This Section presents an analysis of the solar power potential in Egypt with specific reference to solar power plants for electricity production. In the analysis provided, the mapping of solar radiation components is calculated from long-term monthly EUMET-SAT data of DNI and GHI over a period of 15 years (January 1999 - December 2013). The climatological solar power results of this Section are in W/m2. These data enable the modeling of PV and CSP production for several sunshine-privileged locations where solar power plants exist, are under construction, or being planned by NREA. This analysis helps establish the solar potential for electricity generation in Egypt, and can support the design and decision-making process for solar energy systems in the country.

The 15-years mean monthly DNI and GHI reveals a clear seasonal variability with the maximum solar inputs in summer months and the minimum in winter months. In all months we highlight the distinct anthropogenic impact in large cities mainly in the northern Egypt, along the Nile and in the Delta of Nile. In April, May and September the impact of dust is intense in the southern part of Egypt, while the cloud presence can be extended in October in addition to the spring season as a result of the synoptic climatological conditions. The impact of dust aerosols and clouds on DNI is much stronger than on GHI, and this effect is clearly reflected in the following solar atlas maps and in mean monthly curves in the following Sections.

JANUARY

FEBRUARY

MARCH

MEAN SURFACE DIRECT NORMAL IRRADIANCE

Solar Atlas for PV & CSP installations

> Optimum locations for CSP & PV installations using solar Atlas energy maps

LANDS DEVOTED **TO DEVELOPMENT AND USING BY** THE NEW AND RENEWABLE **ENERGY AUTHORITY** (NREA) THROUGH **A PRESIDENTIAL** DECREE

NREA lands solar power and energy potential for PV and CSP installations

KURAYMAT LOCATION (SOLAR STATION)

Land area 660 Feddan devoted by Presidential Decree No 212 of year 2003, Date 11/8/2003, its coordinates are as follows:

KURAYMAT LOCATION (SOLAR STATION)

Monthly mean solar energy in kWh/m2 for PV & CSP systems for the lands of Kuraymat Location (Solar Station).

	SOLAR ENERGY (KWH/M2)				
	CSP	PV			
JAN	121	164			
FEB	136	161			
MAR	194	222			
APR	219	225			
MAY	249	252			
JUN	256	280			
JUL	260	285			
AUG	243	269			
SEP	206	246			
OCT	172	215			
NOV	129	176			
DEC	114	160			
TOTAL	2296	2653			

NREA lands solar power and energy potential for PV and CSP installations

5

ROWESAAT LOCATION IN EL-HAMMAM CITY Land of area (19 1 16) devoted by Presidential Decree No. 399 year 2006, date 20/11/2006. Its coordinates are as follows:

Monthly mean solar energy in kWh/m2 for PV systems for the 5 lands of the northern coast zone.

LOCATION	1	2	3	4	5
JAN	97	103	101	104	107
FEB	111	120	118	122	120
MAR	169	179	178	180	18
APR	202	210	210	213	212
MAY	237	241	244	246	244
JUN	252	252	255	255	25-
JUL	255	258	261	261	26
AUG	237	241	242	242	24
SEP	192	197	197	199	19
OCT	150	156	155	158	16
NOV	107	112	112	114	11
DEC	93	97	95	98	10
TOTAL	2100	2162	2164	2190	219

Monthly mean solar energy in kWh/m2 for CSP systems for the 5 lands of northern coast zone.

LOCATION	1	2	3	4	5
JAN	117	128	124	132	142
FEB	113	134	131	138	149
MAR	172	196	200	199	200
APR	193	211	214	219	215
MAY	232	240	248	252	24
JUN	266	267	277	277	27
JUL	273	283	293	292	28
AUG	259	272	278	276	26
SEP	214	230	230	235	23
OCT	170	187	184	190	19
NOV	129	142	143	144	15
DEC	118	127	124	129	13
TOTAL	2250	2413	2443	2479	249

NREA lands solar power and energy potential for PV and CSP installations

MAP OF THE FOUR LOCATIONS OF ZAAFRANA AREA

Monthly mean solar energy in kWh/m2 for PV systems for the 5 lands of the Suez Governorate (Zaafrana Zone).

SOLAR ENERGY PV (KWH/M2)							
LOCA	TION	1	2	3	4		
JAN		125	116	118	123		
FEB		139	131	131	137		
MAR		197	188	190	196		
APR		220	207	211	216		
MAY		249	237	243	245		
JUN		258	248	257	255		
JUL		261	250	258	256		
AUG		244	234	242	242		
SEP		208	200	204	207		
OCT		174	167	170	173		
NOV		134	128	129	133		
DEC		118	113	113	117		
TOTAI		2326	2216	2262	2298		

Monthly mean solar energy in kWh/m2 for CSP systems for the 5 lands of Suez Governorate (Zaafrana Zone).

	SOLAK EI	NEKGI	CSP (K		2)
LOCA	TION	1	2	3	4
JAN		181	163	159	177
FEB		174	160	151	170
MAR		235	221	213	230
APR		228	210	208	218
MAY		253	237	239	242
JUN		285	272	279	275
JUL		289	273	279	275
AUG		274	259	264	264
SEP		251	241	237	247
OCT		224	214	209	221
NOV		195	187	176	192
DEC		181	174	165	178
TOTAL		2767	2607	2577	2685

SOLAR ENERGY CSP (KWH/M2)

To mohammed ahmed; El-Askary, Hesham

Cc Ehab Ismail; Ehab Kahil; salah.abououf2015@gmail.com; Amgad Elhewehy; Raafat Abdel-KADER; NREA Chairperson

You forwarded this message on 10/12/2017 1:42 PM.

Dear Prof Dr Hesham

Thank you very much for your e-mail and distinguished efforts to support RE activities in Egypt. Regarding Solar Atlas, once getting your permission on the final version, we will launch it and disseminate it among the designated national entities; i.e. Universities, national and international Agencies, i.e. IRENA, WB, LAS, IEA, Consequently, we do appreciate receiving your recommendations, either potential entities or the cover letter, which will refer to our mutual co-operation. **Our target, is to consider the Solar Atlas as an official reference.**

Regarding the operational decision support system, we do support this direction too, as already discussed with your good self. Consequently, please let me know, how could we support such project.

Also, It is our pleasure to meet you at the coming German Chamber work shop on October 8th. I will keep you updated.

Dr. Eng. Mohamed Mostafa El-Khayat Executive Chairman New and Renewable Energy Authority, NREA Chair of Renewable Energy and Energy efficiency of Arab Experts Committee, League of Arab States, LAS.

Support from the Government

Solar Energy Nowcasting

Our Atlas is considered as the official document of the government for the purpose of solar energy planning

@GEOSEC2025 www.earthobservations.org

Business Plan for the establishment, operation and exploitation of a Solar Farm

Aswan's Solar Plant Project Extension of Sir Magdi Yacoub Heart Hospital

The resultant set of five "families" of scenarios provide a wide range of deployment options

	#	РТ	ST	CS	CdTe
	17	50			
	18		50		
	19			50	
	20				50
	21	12		38	
50MW	22	12			38
CONTRACT	23		12	38	
	24		12		38
	25	10		40	
	26	10			40
	27		10	40	
	28		10		40
lax. Area	29	45			
	30		35		
	31			86	
	32				97
	33	12		62	
	34	12			70
	35		12	56	
	36		12		63

CSP

PV

A wide range of possible combinations, e.g.12+50, 12+20 or 20+50, of which one has been highlighted in the report.

Single technology Hybrid approach

Thank You

Communicate and Collaborate with GEO:

http://geocradle.eu/en/

https://www.facebook.com/geocradle/

@GEOSEC2025 www.earthobservations.org