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ABSTRACT   

Soil Spectral Libraries facilitate agricultural production taking into account the principles of a low-input sustainable 

agriculture and provide more valuable knowledge to environmental policy makers, enabling improved decision making 

and effective management of natural resources in the region. In this paper, a comparison in the predictive performance of 

two state of the art algorithms, one linear (Partial Least Squares Regression) and one non-linear Cubist), employed in soil 

spectroscopy is conducted. The comparison was carried out in a regional Soil Spectral Library developed in the Eastern 

Macedonia and Thrace region of Northern Greece, comprised of roughly 400 Entisol soil samples from soil horizons A (0-

30 cm) and B (30-60 cm). The soil spectra were acquired in the visible – Near Infrared Red region (vis-NIR, 350nm-

2500nm) using a standard protocol in the laboratory. Three soil properties, which are essential for agriculture, were 

analyzed and taken into account for the comparison, namely Organic Matter, Clay content and the concentration of nitrate-

N. Additionally, three different spectral pre-processing techniques were utilized, namely the continuum removal, the 

absorbance transformation, and the first derivative. Following the removal of outliers using the Mahalanobis distance in 

the first 5 principal components of the spectra (accounting for ~99.8% of the variance), a five-fold cross-validation 

experiment was considered for all 12 datasets. Statistical comparisons were conducted on the results, which indicate that 

the Cubist algorithm outperforms PLSR, while the most informative transformation is the first derivative. 
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1. INTRODUCTION 

The 2030 Agenda for Sustainable Development has highlighted the importance of food security and the promotion of 

sustainable agriculture, through the specific indicators 2.4.1 (“Proportion of agricultural area under productive and 

sustainable agriculture”) and 15.3.1 (“Proportion of land that is degraded over total land area”) of the Sustainable 

Development Goals (SDGs) . Soil is the foundation of agriculture and maintaining healthy and sustainable soils is a pre-

requisite to maintain and achieve sustainable agriculture. Due to the unprecedented pressures on soils in recent years from 

degradation and over-exploitation which threaten the agro-ecosystem, food security is endangered. If no action is taken to 

maintain and enhance the agricultural lands, which have their nutrients depleted due to the repetitive harvesting of crops, 

and proper soil management practices are not followed, it is impossible to achieve sustainable agriculture. In order to 

mitigate the aforementioned predicaments, understanding and monitoring of the problem is of key essence. Therefore, 
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detailed soil maps should be produced using a dedicated and repeated process in order to accurately depict the pressures 

in agricultural soils. These maps will enable farmers, industry and governmental agencies to explicitly identify the key 

areas endangered, and allow them to take targeted actions towards soil restoration and conservation. 

 

Soil Spectral Libraries (SSLs) contain meticulously recorded data and metadata of soil samples, attempting to capture the 

variability of the soils in an area. The data recorded concerns the physical and chemical soil properties of each sample 

measured in a chemical laboratory, the reflectance spectrum in the visible to near-infrared region (vis-NIR, 350-2500 nm), 

and additional metadata such as the location of each sample, the soil class etc. The importance of highly precise SSLs has 

been highlighted in recent years1–3 due to their ability to produce accurate, detailed, within short time and cost-effective 

thematic soil maps of the area. This is achieved by developing models using partial least squares regression4 and machine 

learning algorithms5, which correlate each soil’s spectrum with its properties. It is thus possible to apply these models to a 

sample’s spectral signature and derive its soil properties using only the information contained in the signature, and with 

no a priori knowledge of any soil property. 

 

Although several other papers have estimated essential for agriculture soil properties6,7, the models are not robust and it is 

important to generate different models for each area. The reason is that soils are vastly complex, and most of the properties 

investigated are complex materials composed of varying molecules. These properties are additionally strongly dependent 

on the underlying conditions within each respective field. 

 

The objective of this paper is hence to assess the ability of vis-NIR to accurately estimate the following soil properties: 

Soil Organic Matter (SOM), Clay content, and concentration of nitrate-N (N-NO3) using a recently generated regional 

SSL in Greece. The aforementioned properties are among the most important soil properties that define the ability of soil 

to support productivity, and are thus considered vital for agricultural activity. 

 

To this end, a number of machine learning models were developed and the most accurate ones were identified. The models 

developed in this work can be utilized in the future to map these properties and assist in the provision of knowledge based 

recommendations for sustainable agricultural management strategies as well as an informed and transparent framework to 

meet policy regulations. 

 

The rest of the paper is organized as follows. Section 2 presents the methodology applied to create the regional SSL, as 

well as the machine learning methods used to establish the models. Section 3 describes in details the results, and presents 

the models’ accuracies. The conclusions of this work are drawn in Section 4, where furthermore suggestions regarding the 

application of this work are made.  

 

2. MATERIALS AND METHODS 

2.1 Populating the regional spectral library 

The regional soil spectral library was developed from the agricultural lands surrounding the Nestos river delta, in the 

Eastern Macedonia and Thrace region, in Northern Greece, which is a part of the largest and most diverse currently SSL 

available in Greece. This area is one of the more important agricultural areas in Greece. Actually 96% of the whole Eastern 

Macedonia and Thrace region is covered by agricultural land. The importance of agricultural production is highlighted by 

the fact that it produces 8.7% of the National Gross Domestic Product, which is 3 times higher than the Greek average. 

This is due to the adequate availability of water resources and soils’ fertility. But many of those agricultural areas are 

within the Natura 2000 network, so protection and conservation of resources is of high importance. Intense agricultural 

practices though have resulted in soil degradation at some parts, so it is necessary to develop systems of recording soil 

indicators and monitoring the soil quality. 

 

The sampling area spans at a region of roughly 400 square kilometers, and is composed mainly of Entisol soils. A random 

stratified sampling procedure was employed, to select 474 Entisol soil samples (~250g) from soil horizons A (0-30 cm) 

and B (30-60 cm). From 235 different sampling points both layers A and B were sampled, while from 4 sampling points 

only the top layer was sampled. The sampling campaign took place during the summer of 2015, within the frame of the 

AgroLess Project. The geographical location of the sampling points are given in Figure 1.  

 



 

 
 

 

 
 

 

The collected soil samples were subsequently divided into two equal parts. The first half was sent to a chemical laboratory, 

which measured SOM using the Walkley-Black method, the Clay content using the Bouyoucos hydrometer method, while 

the Kjeldah method was employed for the measurement of N-NO3. The most important statistical moments of the chemical 

results are presented in Table 1, while the respective box plots are illustrated in Figure 2. All soil properties are positively 

skewed, with the concentration of the nitrate-N exhibiting the largest positive skewness. Their Pearson correlation 

coefficients are given in Table 2; SOM and Clay are the most correlated properties. 

 

 

Property Min Q25 Q50 Mean Q75 Max SD Skewness 

SOM [%] 0.00 0.60 1.10 1.14 1.50 4.18 0.67 1.03 

Clay [%] 0.00 9.00 13.00 15.03 19.00 75.00 9.77 2.01 

N-NO3 [ppm] 0.00 3.60 8.50 25.96 26.48 661.20 50.49 6.07 

 

 

 SOM Clay 

Clay 0.4101 - 

NO3-N 0.2573 0.0668 

 

    Figure 1: The sampling points in the Nestos river delta 

     Table 1: Results of the chemical analysis of the soil samples. Q25, Q50 and Q75 refer to the 25th, 50th and 75th quartile 

respectively,          while SD denotes the standard deviation. 

    Table 2: Cross-correlations between the measured soil properties 



 

 
 

 

 

The second half of the soil sample was air dried, and gently crushed to pass through a <2 mm sieve. It was subsequently 

placed into a dark chamber, and its reflectance spectrum in the vis-NIR region (350-2500 nm) was collected. The PSR+ 

spectrometer from Spectral Evolution was used to collect the spectral signatures, covering the 350-2500 nm range using a 

spectral resolution of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. It further provides a data output with a 1nm 

sampling resolution. A standardization procedure was applied to correct from potential nonsystematic and systematic 

spectral variations8. Additionally, considering that PSR+ uses internally 3 arrays (a 512 element Si array, and two 256 

element extended InGaAs arrays), the step-like artefacts inserted at the two splices of the spectrometer’s sensors were 

corrected using the visible portion of each spectrum as the base spectrum, in order to create continuous spectra. 

 

2.2 Pre-processing of the spectral data 

Initially, the first and last 50nms corresponding to the fringes of the spectra were removed, due to the noise they exhibited. 

Thus, the spectral range considered henceforth is 400-2450nm. After this step, the following process was used to identify 

and remove potential outliers: First, the 5 first principal components (explaining 99.76% of the variance) of the recorded 

reflectance spectra were used, in order to calculate the Mahalanobis distance 𝑑𝑖 of each spectrum. Assuming the data are 

normally distributed, 𝑑𝑖
2 is approximately chi-square distributed with 5 degrees of freedom. By selecting a critical value9, 

27 outliers were identified and removed from the dataset. Thus, the soil spectral library considered in this study was 

comprised of a total of 447 soil samples. 

 

The recorded reflectance spectra were then pre-processed using the following independent methods:  

1) the (pseudo) absorbance transformation (log10(1/reflectance)) 

2) the continuum removal (CR) of the reflectance spectra, and  

3) the first-derivative of the reflectance spectra using a Savitzky-Golay filter of width 7. 

 

The generated datasets are presented in Figure 3. 

 

 

 

 

    Figure 2: Box-plots of the concentrations of the measured soil properties 



 

 
 

 

 

 

2.3 Building of the models and estimating their performance 

In total, 12 datasets were considered (3 chemical attributes times 4 different spectral sources). For each dataset, we applied 

two state of-the-art algorithms, namely the Partial Least Squares Regression (PLSR) algorithm and the Cubist algorithm 

using the caret package in R10. The PLSR algorithm11 constructs a few number of orthogonal factors, termed latent 

variables, which are linear combinations of the initial predictor variables. They are created in a way to explain as much as 

possible the covariance between the input and the output. The Cubist algorithm12 creates a rule-based model, by 

constructing tress with its terminal leaves containing linear regression models. It further can use a boosting-like scheme 

where iterative models (i.e. rule bases) named committees are constructed to enhance the accuracy and robustness of the 

derived model13. 

To create the models, a double 5-fold cross-validation method was used. One fold was left out as an independent set, and 

the four rest were used as calibration; this was repeated for all folds. Internally within the calibration set, a 5-fold cross-

validation experiment was used to estimate the parameters of each algorithm. For PLSR, the parameter estimated was the 

number of latent variables, while for the Cubist algorithm the parameters estimated were the number of committees and 

neighbors. 

To assess and evaluate the performance of the models, the following measures were used in the independent test set: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2
𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

 

 

  

  
 

Figure 3: The initial reflectance spectra, and the 3 different pre-processing techniques used. Depicted are the 5th, 16th, 50th, 

84th and 95th percentiles of the spectra. 



 

 
 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 −  𝑦�̂�)

2𝑁
𝑖=1

𝑁
 

where 𝑦𝑖 is the soil property of the i-th sample, 𝑦�̂� is the predicted property for the i-th sample, and �̅� is the mean property of 

all samples. 

3. EXPERIMENTAL RESULTS 

The experimental results for the prediction set are presented in Tables 3, 4, and 5 for the SOM, the Clay Content and N-

NO3 respectively. It should be noted that each number presented in the aforementioned tables refers to the average of the 

5 folds. Both accuracy as well as structural parameters are given for both algorithms, in order to assess both the predictive 

performance as well as the complexity of the underlying models. The structural parameters given are the latent variables 

(LV) for PLSR, and the number of committees and neighbors for the Cubist algorithm. 

 

 

  PLSR  Cubist 

  𝑅2 RMSE LV  𝑅2 RMSE Committees Neighbors 

Reflectance  0.6675 0.3893 14.8  0.7270 0.3527 20.0 0.0 

Absorbance  0.6215 0.4156 12.8  0.7338 0.3485 20.0 0.0 

Continuum Removed  0.6179 0.4152 13.0  0.8724 0.2399 18.0 1.8 

First derivative  0.6874 0.3775 7.4  0.9142 0.1978 16.0 9.0 

 

 

 

 

  PLSR  Cubist 

  𝑅2 RMSE LV  𝑅2 RMSE Committees Neighbors 

Reflectance  0.6643 4.6200 12.4  0.7535 3.9591 20.0 0.0 

Absorbance  0.6671 4.4366 10.6  0.7315 3.9844 18.0 0.0 

Continuum Removed  0.6620 4.7866 10.8  0.8725 2.9398 18.0 0.0 

First derivative  0.6739 4.6890 5.0  0.9070 2.5035 14.2 7.4 

 

 

 

 

  PLSR  Cubist 

  𝑅2 RMSE LV  𝑅2 RMSE Committees Neighbors 

Reflectance  0.2471 45.0361 9.0  0.4173 39.6216 16.0 5.4 

Absorbance  0.2394 45.2658 9.0  0.7446 26.2442 16.0 4.6 

Continuum Removed  0.2528 44.8653 6.0  0.8087 22.6367 16.0 0.0 

First derivative  0.2960 43.5490 3.4  0.7718 24.7546 14.0 9.0 

 

The results indicate that Cubist outperforms PLSR in terms of accuracy, with an average 𝑅2 of 0.7712, compared to an 

average 𝑅2 of 0.5247. PLSR fails to accurately estimate the concentration of N-NO3, whereas the Cubist algorithm attains 

a significant 𝑅2, with a maximum value of 0.8087 when the continuum removed spectra are considered. By applying the 

Wilcoxon signed rank test14 between the achieved 𝑅2 values of both algorithms, we can test whether the difference of 

accuracy is statistically significant. The p-value of the test is 4.8828e-04, which rejects the null hypothesis, i.e. that the 

algorithms attain similar accuracies. Therefore we can conclude that Cubist statistically outperforms PLSR. 

 

Additionally, the first derivative transformation scored the highest average 𝑅2 (0.7084) and was ranked first among the 

different pre-processing methods (Table 6). Moreover, the CR transformation was ranked second, closely following the 

 

     Table 3: Results for Soil Organic Matter 

     Table 4: Results for Clay Content 

     Table 5: Results for N-NO3 



 

 
 

 

first derivative transformation. These results underscore the fact that spectral pre-treatment can have a large impact on the 

derived chemometric models, by enhancing the spectral information. 

 

 

 

 Reflectance Absorbance Continuum Removal First derivative 

Ranking 4 3 2 1 

Average 𝑅2 0.5794 0.6230 0.6810 0.7084 

 

 

To identify the most important wavelengths for each soil property, we used the best model as identified from Tables 3, 4, 

and 5. The variable importance for the Cubist models is a linear combination of the usage of each feature both in the rule 

conditions, as well as in the model. The identified features are presented in Figure 4. These features are similar to the ones 

reported as important wavelengths of spectral absorptions15,16. More concretely, important regions for SOM are around the 

following wavelengths (in nm): 1100, 1600, 2000 and 2200-2400, while the visible range has been shown to improve the 

accuracy results. For Clay minerals, the 2200-2400 region is the most important. 

 

 

 

4. CONCLUSION 

Evaluating soil indicators by using soil spectroscopy could provide essential tools for land management according to the 

low input agriculture principles. Low input agriculture requires detailed and dense spatial temporal data of soil indicators 

in order to develop sustainable management plans to help minimize soil fertility loss and eliminate irrigation overdose. 

Measuring those soil indicators with laboratory methods can be quite costly and time consuming, enabling the risk that the 

results would be available later than the management plan should have been defined. By using soil spectroscopy results 

can be obtained on time while minimizing the cost of the operation, which could prove to be vital in order to increase the 

competitiveness of agricultural production. In this context harmonized data are provided with sufficient accuracy for 

several applications in the field of smart agriculture. Utilizing spectra pretreatment techniques prior to the development of 

the algorithms facilitated the removal of unwanted background effects and noise. In order to derive the best chemometric 

models from soil spectra, different pre-processing techniques, as well as different machine learning algorithms, should be 

tested. 

 

This research has focused on the implementation of state of the art methodologies and algorithms to develop an easily 

updatable soil spectral library in order to fully contribute to the implementation of SDG indicators, and assist the provision 

of novel in-situ observation methods which enables sustainable farm management. 

     Table 6: Ranking and average performance of each pre-processing method when both algorithms are considered 

     Figure 4: The 20 most important features (wavelengths) of each soil property, as identified by the best model 



 

 
 

 

Future work should focus on extending this Soil Spectral Library with samples from the Balkans and the MENA region. 
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