

NEW SOIL AND VEGETATION MAPPING SENSORS FOR FIELD AND AIRBORNE APPLICATIONS

Petri Nygrén, SPECIM Oy

GEO CRADLE Limassol 16.11.2016

➢ SPECIM Oy in few words

- ➢ New sensor family
- Some hyperspectral imaging application examples

SPECIM, Spectral Imaging Ltd.

Since 1995, world leading manufacturer and supplier for hyperspectral imaging sensors

Distributor and integrator network covers more than 40 countries

~5000 sold spectrographs ~150 sold AISA sensors (AISA = Airborne Imaging Spectrograph for Applications)

> ~60 employees, privately owned From Oulu, Finland

 \leftarrow Increasing Frequency (v)

NEW AISA FAMILY

FENIX	FENIX 1K	OWL	IBIS	KESTREL
Co-registered VNIR and SWIR pixels through one front optics in one File	Co-registered VNIR and SWIR pixels through one front optics in one File	Smallest high performance thermal infrared (LWIR) hyperspectral imager with system integral radiometric calibrator	First airborne sensor to quantitatively map sun-induced fluorescence. Spectral range at red edge	High performance UAS sensor (< 5 kg), VNIR and eNIR models (Kestrel10, Kestrel16)
Pushbrooming hyperspectral imager, 384 swath pixels, 380-2500nm, Up to 620 bands of 3- 10nm FWHM	Pushbrooming hyperspectral imager, 1024 swath pixels, 380-2500nm, Up to 620 bands of 3- 10nm FWHM	Onboard radiometric calibrator, Pushbrooming hyperspectral imager, 384 swath pixels, 7.7-12.6µm, 95 bands of 100nm FWHM	Pushbrooming hyperspectral imager, 384 swath pixels, 680-840nm, 1000bands of 0.25nm	Pushbrooming hyperspectral imager, 640-2040 swath pixels, 380-1600nm, Up to 350 bands of 3- 8nm FWHM

SPECIM FX10 / 17

Free wavelength selection from 220 bands within the camera coverage at very high collection speeds

- Smaller SWaP (Size, Weight and Power requirements)
- Simplified operation
- Full calibrations provided for each AISA sensor: Radiometric, Spectral and Geometric
 - Improved support for atmospheric correction routines
 - Improved georeferencing accuracy
 - Improved spectral accuracy

SAME SENSOR FOR FLYING, FIELD AND LAB USE

Vegetation / pollution / material detection: FENIX SPECIM

GEOLOGICAL MAPPING EXAMPLE: OWL

GEOLOGICAL MAPPING EXAMPLE: OWL

Notesco, G., Ben Dor, E. and Brook, A. (2014). Mineral mapping of Maktesh Ramon in Israel using hyperspectral remote sensing day and night LWIR images. GRSG AGM meeting, London, December 2014.

GEOTHERMAL EXAMPLE: OWL

Lat: 25°11'35.71"N, Lon: 121°35'20.29"E

UTM, Zone 51 North, WGS-84

Ruid Baster Pyramid

EMISSIVITY MEASUREMENT: OWL

HOT SPRING EXAMPLE: OWL

SUN-INDUCED CHLOROPHYLL FLUORESCENCE

LATEST AISA: KESTREL

- 4.8kg system weight
- Remote control capability through Ground Station sw
- Kestrel 10 : 400-1000nm
 - Vegetation and water related applications
- Kestrel 16: 600-1600nm
 - Industrial applications
- Full system level product
 - Sensor
 - Data collection device (DPU)
 - Scanner- and georeferencing accessories available

TREE SPECIES CLASSIFICATION: KESTREL

KESTREL IN MANNED AIRCRAFT

UAV INSTALLATIONS

SPECTRAL IMAGING

