

Establishing a pilot regional climate change web application tool for end-users

Zanis P.¹, Akritidis D.¹, Tsikerdekis T.¹, S. Solomos ², V. Amiridis ²

1 Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece

2 National Observatory of Athens, Greece

GEO-CRADLE Workshop & Project Meeting 16-17 November 2016, Limassol, Cyprus

WP410 – Adaptation to Climate Change (ACC)

Leader: NOA Participants: CEDARE, CUT, INOE, IPB, AOA Duration: M9-M24

The ROI is one of the most sensitive and vulnerable to climate change regions on Earth. Task 410 envisages to consolidate EO platforms with atmospheric and climate models to mitigate the climate change and its side effects.

The Ultimate Goal is:

Provide the necessary support and coordination to **existing infrastructures**, to deliver consolidated information and knowledge for long term strategic planning on adaptation and mitigation to climate change and air quality for the RoI.

Steps to achieve the goals of WP410

General key objectives

Collection, homogenization, archiving and integration of EO atmospheric data

CLIMATE Regional climate models and climate data for past and future climate

Support decision makers on climate change mitigation and adaptation policies

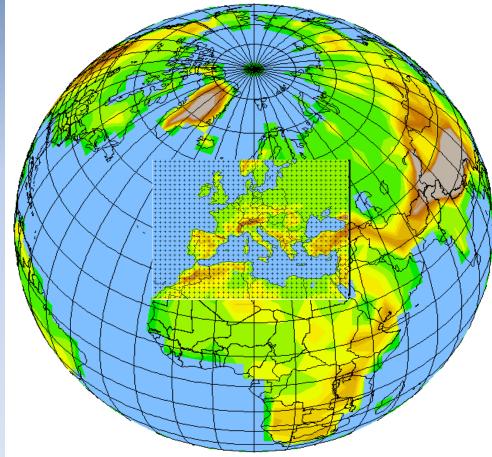
WEATHER Weather forecast models and near real time observations

AIR QUALITY Air quality forecast models and near real time observations

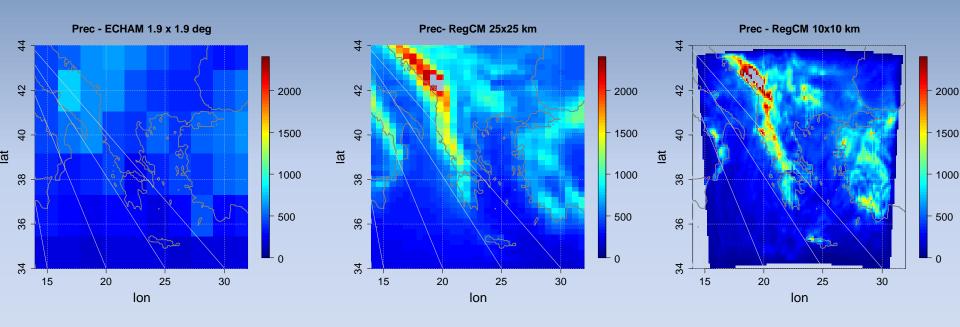
Support local authorities and citizens awareness in weather extremes (heat waves, floods, storms, etc)

Support local authorities and citizens awareness in air quality exceedances (PM, ozone, Desert dust, fire smoke, volcanic ash, etc)

Establishment of relevant regional pilot studies


User needs for ACC

- The survey analysis indicated various levels of maturity regarding climate change awareness and EO/model data needs among the partner countries.
- A need for reliable open access weather and climate data is expressed by all countries of the RoI. Specific meteorological and climatic variables are requested, such as: air temperature, humidity, wind speed and direction ,precipitation, cloud cover, solar radiation, water evaporation and humidity evapotranspiration.
- For ACC is essential the use of future climate data from model projections.
- It is also essential the use of high resolution model projections for the RoI based on RCMs.
- Ensemble versus individual information is also important for uncertainty estimates.
- Plenty of open access data in databases (CORDEX, ENSEMBLES, PRUDENCE) but restricted usability from non-experts.
- There is need for establishing a user friendly regional climate change web application tool for end-users.


Regional Climate Modeling:

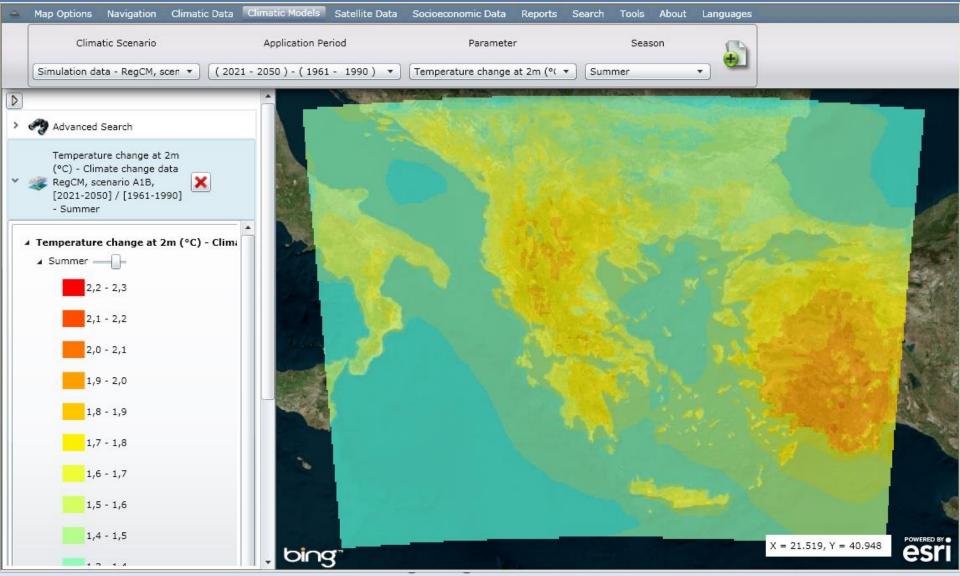
- Technique: A "Regional Climate Model" (RCM) is "nested" within a GCM in order to increase the resolution of a climate simulation.
 - Initial conditions (IC) and lateral boundary conditions (LBC) for the RCM are obtained from the GCM
- Strategy: The GCM is used to simulate the response of the general circulation to large scale forcings, while the RCM is used to simulate the effect of sub-GCM-grid scale forcings and to provide fine scale regional information.
 - The RCM is intended to only enhance the GCM information
- Technique inherited from NWP

Modelled precipitation climatology (1975-2000) based on GCMs and RCMs: The effect of resolution

Source: Zanis et al., A transient high resolution regional climate simulation for Greece for the period 1960-2100: Evaluation and future projections, Climate Research, 64: 123–140, doi:10.3354/cr01304, 2015

ACC Pilot structure

General key objectives


Establishment of relevant regional pilot studies

PILOT 1: Establishing a pilot regional climate change web application tool

Support end-users and decision makers on climate change mitigation and adaptation policies PILOT 2: Strengthening the interplay between the Earth Observing System and modeling activities for weather, air quality and climate

Use of satellite data for optimization and assimilation in regional climate models and weather forecast models

Coordination: Department of Meteorology and Climatology, Aristotle University of Thessaloniki

PILOT1: Set up a user friendly interactive web application tool for end users to retrieve climate variables and climate change information from high resolution regional climate projections

STEP 1: Set up a regional high resolution database (0.11° × 0.11°) including climate projections for a number of climate variables from various Regional Climate Models (RCM) and emission scenarios (data source: EURO-CORDEX: http://www.euro-cordex.net/).

STEP 2: Set up a database with secondary climate indices relevant to specific sectors of interest and tailored to end-user needs.

STEP 3: Set up an interactive web application for retrieving time series of the relevant climate variables and indices following a selection tree:

- Selection of PARAMETER/VARIABLE (e.g. climate variables or climate indices)
- Selection of FREQUENCY (e.g. month, year)
- Selection of TIME FRAME (e.g. present / future time slice)
- Selection of EXPERIMENT/SCENARIO (e.g. hindcast, RCP26, RCP45, RCP85)
- Selection of MODELS (e.g. RegCM, WRF, ensemble)
- Selection of the LOCATION (lat, lon)

Regional Climate application tool

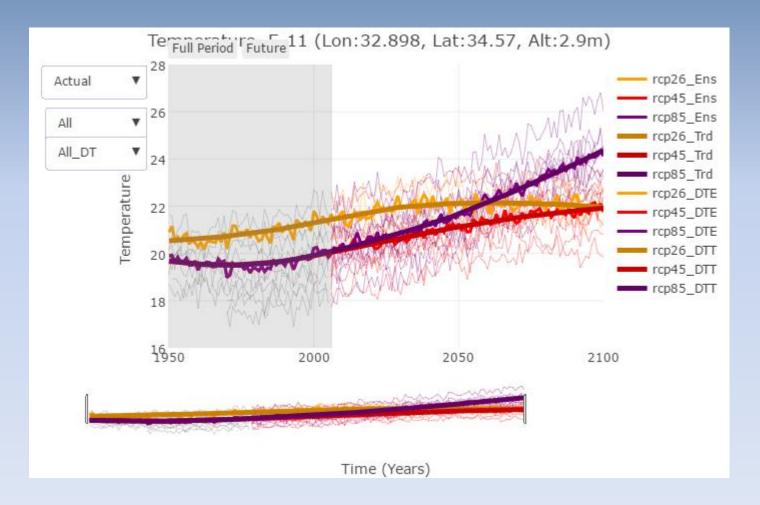
Indicative list of Climate variables and indices

Climate Indices		Relevance
CI1	Mean near surface temperature	Fundamental
CI2	Precipitation rate	Fundamental
CI3	Maximum near surface temperature	Fundamental, extremes
CI4	Minimum near surface temperature	Fundamental, extremes
CI5	Wind speed at 10m, 50m, 100m and 200m	Fundamental, Energy, natural disasters
CI6	Surface absorbed solar radiation	Fundamental, Energy, Tourism,
~		Agriculture
CI7	95th percentile of rain day amounts	Extremes, natural disasters
CI8	95th percentile of wind speed at 10 m	Extremes, natural disasters
CI9	Annual greatest 5-day total rainfall	Extremes, natural disasters
C10	Fraction % of total rainfall from events> long-term P90	Extremes, natural disasters
C11	Number of events > long-term 90th percentile of rain days	Extremes, natural disasters
CI12	Number of frost days Tmin < 0 degC	Extremes
CI 13	Heat Wave Duration Index	Agriculture,Tourism
CI 14	Standardized Precipitation Index (SPI)	Agriculture, Water resources
CI15	Potential evaporation	Agriculture
CI16	Growing season duration (GSD)	Agriculture
CI17	Tourism Climate Index (TCI)	Tourism
CI18	Snow depth (SnowD)	Tourism
CI 19	Heating Degree Day (HDD)	Energy
CI20	Cooling Degree Day (CDD)	Energy

RCM projections EURO-CORDEX 1950-2100 http://www.euro-cordex.net/

Cordex European Domain (E-11) 400 350-300-250latid 150-100-50-0-100 150 250 400 200 300 350 50 0 lonid

Scenario	GCMModel	RCMModel
rcp26	CNRM-CERFACS-CNRM-CM5	CNRM-ALADIN53
rcp26	MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009
rcp45	CNRM-CERFACS-CNRM-CM5	CLMcom-CCLM4-8-17
rcp45	CNRM-CERFACS-CNRM-CM5	CNRM-ALADIN53
rcp45	ICHEC-EC-EARTH	KNMI-RACMO22E
rcp45	IPSL-IPSL-CM5A-MR	IPSL-INERIS-WRF331F
rcp45	IPSL-IPSL-CM5A-MR	SMHI-RCA4
rcp45	MOHC-HadGEM2-ES	CLMcom-CCLM4-8-17
rcp45	MOHC-HadGEM2-ES	SMHI-RCA4
rcp45	MPI-M-MPI-ESM-LR	CLMcom-CCLM4-8-17
rcp45	MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009
rcp85	CNRM-CERFACS-CNRM-CM5	CLMcom-CCLM4-8-17
rcp85	CNRM-CERFACS-CNRM-CM5	CNRM-ALADIN53
rcp85	ICHEC-EC-EARTH	KNMI-RACMO22E
rcp85	IPSL-IPSL-CM5A-MR	IPSL-INERIS-WRF331F
rcp85	IPSL-IPSL-CM5A-MR	SMHI-RCA4
rcp85	MOHC-HadGEM2-ES	CLMcom-CCLM4-8-17
rcp85	MOHC-HadGEM2-ES	SMHI-RCA4
rcp85	MPI-M-MPI-ESM-LR	CLMcom-CCLM4-8-17
rcp85	MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009

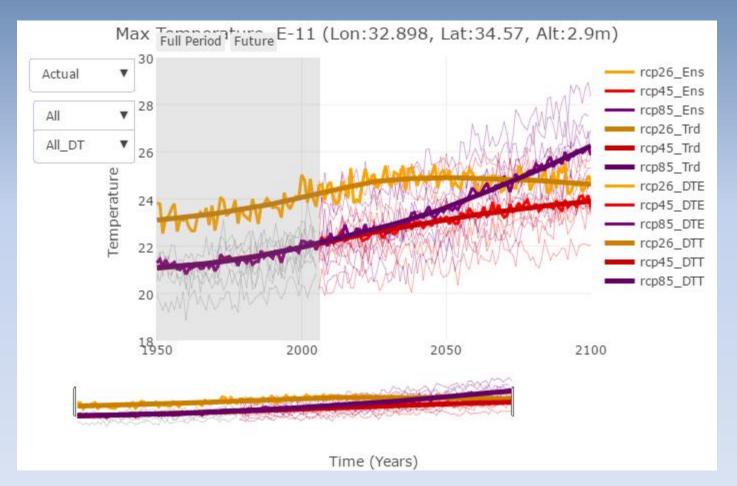

Regional Climate application tool

Welcome to climate-projection beta

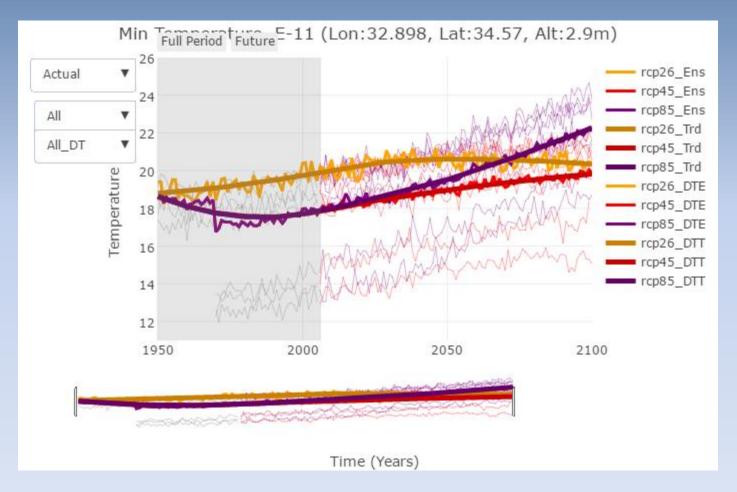
http://climate-projection.weebly.com/



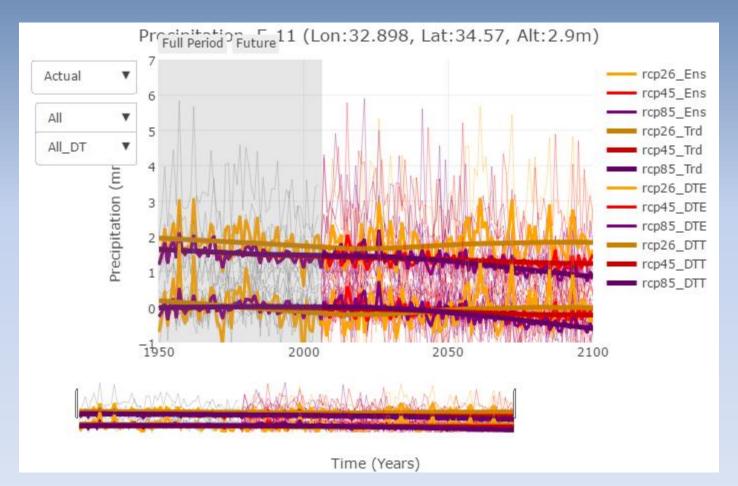
Temperature Projections - Limassol



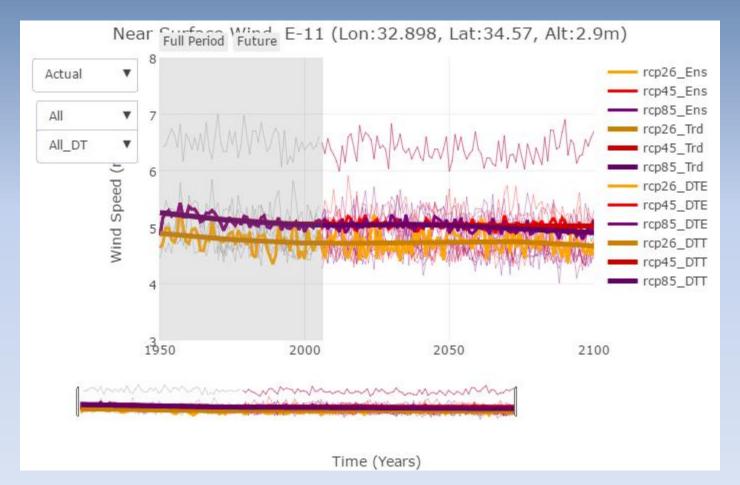
Temperature Difference Projections - Limassol



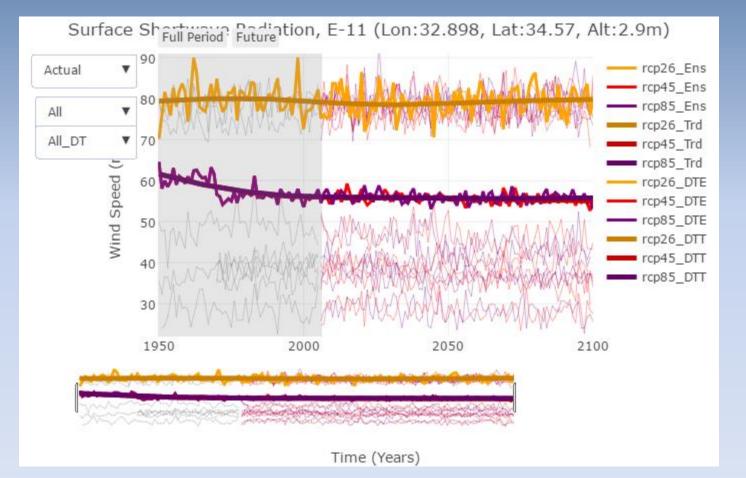
Max Temperature Projections - Limassol



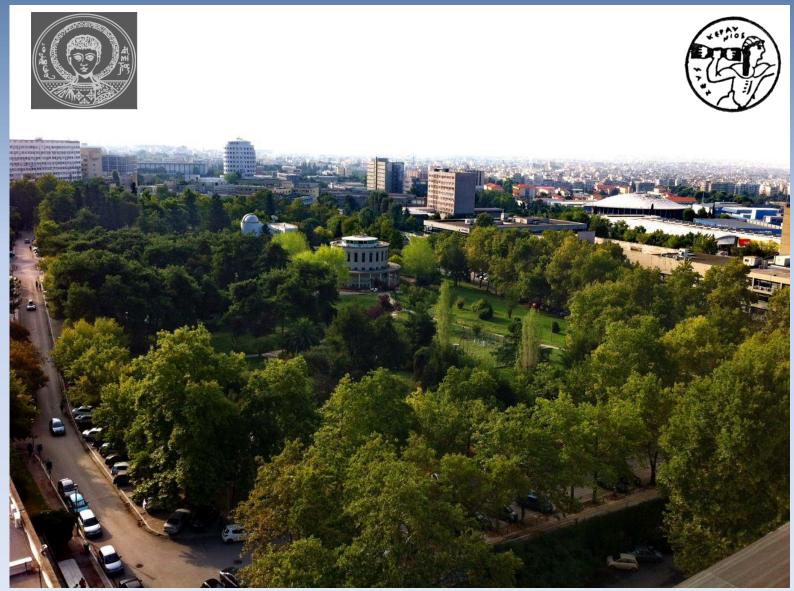
Min Temperature Projections - Limassol



Precipitation Projections - Limassol



Wind Speed 10m Projections - Limassol



Incoming Shortwave Radiation Projections - Limassol

Thanks for your attention

