

Coordinating and integRating state-of-the-art Earth Observation Activities in the regions of North Africa, Middle East and Balkans and Developing Links with GEO related intiatives toward GEOSS

GEO-CRADLE Project Meeting 2 16th November, 2016 Task 4.2

SOIL SPECTRAL INFORMATION IN THE ERA OF COMMERCIAL HYPERSPECTRAL SENSOR IN ORBIT: PRISMA PROJECT

S. Pignatti, F. Longo

stefano.pignatti@.cnr.it francesco.longo@asi.it

Eratosthenes Research Centre Limassol, Cyprus

The GEO-CRADLE project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 690133.

✓ The next spaceborne mission; PRISMA

- $\checkmark\,$ The impact of HYS missions for soil sciences
 - Texture (% of clay, silt and sand)
 - % of Soil organic carbon SOC
 - Soil moisture
 - Soil contamination (?)
 - Soil vigour
- ✓ Related agronomical proxi variables related to food security issues

Future IS spaceborne missions

http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf

Future IS spaceborne missions <

http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf

stituto di

metodologie per l'analisi ambientale

PRISMA Payload

The PRISMA Payload operates with a <u>Pushbroom scanning</u> concept that records reflected radiation from the Earth surface in the PAN range, in the visible/near infrared (VNIR) range and in the short wave infrared (SWIR) range with a band width of 10 nm.

The PAN sensor is characterized by a ground sampling distance of <u>5 m</u> (nadir at sea level); the VNIR/ SWIR GSD is <u>30 m</u>.

Swath / FOV	30 km / 2.77°					
Ground Sampling Distance (GSD)	Hyperspectral: 30 m / PAN: 5 m					
Spectral Range	VNIR: 400 – 1010 nm SWIR: 920 – 2505 nm PAN : 400 – 700 nm					
Spectral Width (FWHM)	≤ 12 nm					
Radiometric Quantization	12 bit					
VNIR SNR	> 200:1					
SWIR SNR	> 100:1					
PAN SNR	> 240:1					
MTF@ Nyquist freq.	VNIR/SWIR along track > 0.18 VNIR/SWIR across track > 0.34 PAN along track > 0.10 across track >0.20					
Spectral Bands	66 VNIR / 173 SWIR					
Data processing	Lossless compression with compression factor 1.6 Near lossless compression					
Thermal Control System	Double stage passive radiator (1 for each HYP channel) + stabilization heater					
Mass (including 5% margin)	Optical Head: 175kg Thermal Shield: 25kg Main Electronics: 12kg					
Power Consumption (including 10%margin)	Earth Observation /calibration: <105W Idle: <90W					

Cold radiator

Heat pipes

The hyperspectral sensor utilizes prisms to obtain the dispersion of incoming radiation on a 2-D matrix detectors so to acquire spectral bands of the same strip on ground.

Limassol Project Meeting, 17/11/2016, Eratosthenes Research Centre

User interaction with the system

stituto di

Limassol Project Meeting, 17/11/2016, Eratosthenes Research Centre

Level 0:

- O Instrument data decoding and decompression
- O PAN, HYP layers and ancillary data rearrangement
- O Cloud cover percentage calculation (for image cataloguing)
- O Image preview (for image cataloguing)

Level 0 data archiving

Level 1 (upon user request)

- O Image rediometric, spectral and geometric calibration
- O Additional: user surface cover map

Level 2 (upon user request)

- **O** Atmospheric corrections
- Atmospheric load estimation (columnar water vapour and aerosol load, thin clouds optical thickness)
- O Image geo-referencing/geocoding

IS versus

soil properties and crop parameters retrieval

Soil components

Vegetation
components

EO	Products	Description	Unit	EO product maturity level	Notes
	CLAY	Percentage of clay in the first 30 cm of soil	%	medium	
	SILT	Percentage of silt in the first 30 cm of soil	%	medium	limited to mechanically
	SAND	Percentage of sand in the first 30 cm of soil	%	medium	prepared bare ground
	SOC	Percentage of organic carbon in the first 30 cm of soil	%	low	

EO Products	Description	Unit	EO product maturity level	Notes		
LAI	Leaf Area Index	-	high			
Cab	Chlorophyll a and b Content of in leaves per unit of area	mg cm ⁻²	high	limited to herbaceous		
FPAR	Fraction of photosynthetically active radiation absorbed by vegetation cover	-	high			

EO Products	Description	Unit	EO product maturity level	Notes		
YLD	Crop production	t ha⁻¹	low			
QN	Content of nitrogen in the aboveground biomass	%	low	limited to a cereal		
GN	Nitrogen content in grain	%	low	crop to be defined		
Nres	nitrate nitrogen (NO3-N-) in the soil at the end of crop cycle	kg ha ⁻¹	low			
				8		

Limassol Project Meeting, 17/11/2016, Eratosthenes Research Centre

Agricultural components

Soil component - texture

Mean %

37.91

sd

6.78

skewness

-0.37

0.95

0.64

Max %

49.61

n°

72

clay

Min %

18.37

F. Castaldi, R. Casa, A. Castrignanò, S.Pascucci, A. Palombo and S. Pignatti «Estimation of soil properties at the field scale from satellite data: a comparison between spatial and non-spatial techniques» ESJ, Volume 65, Issue 6, pages 842–851, November 2014

Soil component – soil moisture 🦯

0.00

	Spectral dataset						
	SOLREFLIU	MAC					
N° samples	89	72					
Туре	Topsoil	Topsoil					
Sampling Area	France & China	Italy					
Spectral Meas.	Directional	Directional					
Spectral range	350-2500	350-2500					
Spectral Res.	1 nm	1 nm					

Pearson's correlation coefficient (r) between Soil Moisture content and reflectance values of MAC and SOLREFLIU spectral datasets as a function of λ

Soil Moisture Index	Soil Moisture Index		а	b	с	RMSE (%)	RPIQ	
SMIR_A	0.89	0.03	1.63	-1.89	0.05	4.25		
SMIR_B	R ₁₅₀₆ /R ₁₇₇₀	-0.88	0.48	0.24	-0.75	0.05	4.25	
NSMI Normalized Soil Moisture Index	NSMI (R ₁₈₀₀ - R ₂₁₁₉)/ Normalized Soil (R ₁₈₀₀ + R ₂₁₁₉)				1.46	0.05	4.25	
		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Cross- correla the qua SM=a+	validatio tion coe adratic r ·b*inde>	on result efficient egression (+c*inde	rs Pearso (r), the co ons ex ²	on's pefficients of	
ທ _ີ 1		8 ° °	the root mean square error (RMSE) and					

the root mean square error (RMSE) and the Ratio of the Performance to the Interquartile Range (RPIQ) are reported in the above tab

Hyperion, Nov. 7, 12

Soil component – soil moisture / clay

Pearson's correlation coefficient (*r*) between clay content and Band Depth spectral values for the four soil moisture classes of the **MAC** spectral library (**VW**: *very wet*, **W**: *wet*, **LW**: *low wet*, **D**: *dry*)

SM class	Clay index	r
VW	$(BD_{2230} - BD_{1680})/(BD_{2230} + BD_{1680})$	0.70
W	$(BD_{1340} - BD_{2360})/(BD_{1340} + BD_{2360})$	-0.73
LW	BD ₅₃₀ /BD ₂₂₂₅	0.65
D	(BD ₂₁₇₀ - BD ₂₂₇₀)/(BD ₂₁₇₀ + BD ₂₂₇₀)	0.75

			CLAY ESTIMATION METHOD												
				Spectral in	dices				PLSR						
		Summer Autumn				Winter Summer			er Autumn				Winter		
	SM class	RMSE (%)	RPIQ	RMSE (%)	RPIQ	RMSE (%)	RPIQ		RMSE (%)	RPIQ	RMSE (%)	RPIQ		RMSE (%)	RPIQ
Different	VW	6.6	2.6	6.3	2.7	6.3	2.7		7.1	2.4	6.7	2.5		7.4	2.3
spectral	W	8.2	2.1	8.5	2	10.6	1.6		6.3	2.7	6.8	2.5		9.2	1.8
indices	LW	8.5	2	8.2	2.1	7.8	2.2		9.5	1.8	9.1	1.9		9.5	1.8
according	D	5.9	2.9	6	2.8	5.9	2.9		4.7	3.6	5.8	2.9		7.3	2.3
to SM	Mean	7.3	2.3	7.3	2.3	7.7	2.2		6.9	2.6	7.1	2.4		8.4	2.3
level	D to all	13.2	1.3	13.3	1.3	11.9	1.4		15.8	1.1	15.6	1.1		10.4	1.6

Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data. *Remote Sens.* 2015, 7, 15561-15582.

SOC

Emissivity

MNF

Soil component – SOC @ LWIR

1.14

1.18

1.46

1.51

1.96

0.15

0.24

0.53

0.31

0.26

2

Ordinary kriging map obtained from actual SOC data (a) compared with (b) the ordinary kriging map from predicted values obtained by cubist calibration model using TASI-600 MNF data. The error map (c), expressed as difference between kriged predicted SOC (%) and kriged measured SOC (%),

550000

Soil contamination – heavy metal

Spectral Library 110 samples laboratory concentration (ppm) & ASD spectral measurements

552060 554008 559000 550000 580000 562000 564600 566088 559000 570000

Soil and Biomass constant pattern maps

- Aimed at defining the local scale elementary units for crop growing models simulations either at the parcel or the within-parcel scale (static over the years)
- Foreseen the availability of the new spaceborne HIS data, multispectral (SPOT & Landsat) interannual time series of images (i.e. winter images for bare soil and summer images for biomass) have been used

Italy time-series: (2013-2014)

- 27 SPOT images / 385 fields
- 26 Landsat 7 ETM+ / 394 fields

Spain time-series: (2009-2014)

- 22 Landsat 5 and LC8-OLI
- 101 fields

Greece time-series: (2003-2015)

- 40 Landsat 5 and LC8-OLI
- 6934 fields

A downstream service to support agro-production, planning and policy 'Soil and Biomass constant pattern maps'

Greek time-series (2003-2015): 40 Landsat images (GSD 30 m) - 6934 parcels

ERMES: Rice Farm in the Lomellina rice agricultural district (IT) Optical (SPOT 5m) and Radar (COSMO-SkyMed 3m) time series

MAP LEGEND

AN EARTH OBSERVATION MODEL BASED RICE INFORMATION

B (6-14 June 2016)

C (30 June-8 July 2016)

A,B,C Cosmo-Skymed (Radar X band) 2016 time variability maps (3m/pixel)

D

Soil/Biomass constant pattern map obtained using **SPOT** 2002-2014 time series (5-10m/pixel) 16

- ✓ From 2018 PRISMA & ENMAP hyperspectral 30m/pixel images will be available to the community (free data policy?);
- ✓ The advent of HYS will allow the mapping of the physical and chemical characteristics of agricultural soils (in the first 30 cm of soil) like:
 - Texture (% of clay, silt and sand)
 - % of soil organic carbon SOC
 - Soil moisture
 - Soil contamination (?)
- The availability of new HYS imagery will impact on the retrieval accuracy of:
 - parameters pertaining to the agronomical management ;
 - agronomical proxi variables (e.g. yield, nitrogen content in grain, nitrate nitrogen in the soil at the end of crop cycle etc.) related to food security issues

- ✓ The future HYS missions should assure an higher spatial resolution, and a wider swath to fulfill the tight requirements of the precision agriculture applications;
- HyspIRI and SHALOM will start to fill these gaps providing high spatial resolution and a full spectral coverage covering from the VSWIR to the LWIR
- ✓ Synergy with the Sentinels (wide swath and temporal frequency) is still an important issue

