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The importance of building a global SSL



Why Global Soil Spectral Library? e T——

Data mining from spectral information to generate an
attribute “model” requires hundreds of samples in
order to provide reliable results

Global Soil Spectral Library (GSSL) will compose of
hundreds samples that represents all the soils world
wide

4
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D The need of Soil Spectral Library e <3
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e For quantitative applications: many soil samples are needed
(Soil data mining of a “model” requires hundreds of spectra
samples in order to provide reliable results.

e Users are gathering many soil samples mostly under local scale.

e A need for regional and global scales’ library is essential.

e Gathering local and regional spectral data (soil spectral library)
needs agreed “standard and protocols”.



Soil Spectral Library : The Practical Structure
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Soil samples at storage, with wet chemistry data plus reflectance spectra measured under a well accepted protocol process

..............
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The Concept of Soil Mapping using SSL and HSR from orbit
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Product Name SHALOM (9m GDS)

Crop, Rangeland and Invasive Species Map SHALOM products that are based on GSSL
Burnt Area Map

Vegetation Status Indicators
Vegetation Damage and Stress Indicators

Fire Fuel Map

Mineral Map
Coastal Bathymetry Map
Urban And industrial Functional Area Map

Lithological Map

Lava Flow Parameters
Soil Surface Pollutants Map
Volcanic Gas And Aerosol Emission Map

Forest Species Map

Forest Biomass Map
Ice Cover Map
Soil Characterization Map

Land Cover Map

Land Cover Change Detection Map
Snow Cover Map
Forest Nitrogen and Chlorophyll Map

Wetlands Classification Map
Marine And Aquatic Quality And
Productivity Indicators
Lava and ash distribution map

Snow And Ice Cover Characterization
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In 2006 Raphael Viscorra Rossel understood the GSSL importance and
initiated an activity toward establishing the first GSSL

Global spectral library project

* Startedin 2008 as voluntary
collaborationinresponseto %4
growing interest in soil vis—NIR 0.3

Y
spectroscopy R, \
« Scientists from each continent %!
coordinated and developed 500 1000 1500 2000
guidelines and protocols Wavelength /nm

* Aim to bring together a community of scientists,
encourage research, development of new applications
and adoption of spectroscopy in the soil, earth and
environmental sciences.

provided by Viscorra Rossel



First World Soil Spectral Library -
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Belgium
Botswana
Brazil
Brunei
Camercon
Canada
China
Colombia
Costa Rica
Cuba
Denmark
Ecuador
Finland
France
Germany
Ghana

Netherlands
New Zealand
Nicaragua
Nigeria
Samoa
Senegal
South Africa
Spain

Sn Lanka
Sweden
Switzeriand
Thailand
Tunisia

UK

Uruguay
usa

Zambia

Current global distribution of spectra

Total of 6721 spectra

Not all representative — e.g. China only field-scale data
Coords for Brazil, Argentina and Ecuador coming
Coords for large part of USA still to be added

No samples in Russia and eastern Europe

CsinRo

http://groups.google.com/group/soil-spectroscopy/files

2008


http://groups.google.com/group/soil-spectroscopy/files

European
Commission
 —

The LUCAS spectral library
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Density (/1000 km?
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Current status:

23 European countries

~20,000 high quality spectral
readings

Metadata: Clay, silt, sand, OC, pH,
CEC, CaCO,, Geographical
coordinates, land use, etc
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Creation of four subsets: Cropland,
Grassland, Woodland, and Organic soils



In 2015 Raphael effort yield the first GSSL e —— <&
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Global Soil VNIR-SWIR Spectra

Some 20,000 vnir-swir  (350-2500 nm) spectra from 12,509 sites
45 collaborators from 35 institutions
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provided by Viscorra Rossel



GSSL

84% with coordinates
60% from the 0-30 cm
30% from the 30-100 cm
10% from > 1m

provided by Viscorra Rossel

Global soil vis—NIR spectra in numbers
Continent Attributes
8646 Oceania * pH 20,515 (20,515)
5198 North, Central America * Organic C17,931(9757)
3518 Europe * Clay 17,463 (10,064)
3097 Asia * Sand 12,058 (3395)
1621 Africa * CEC9588(5014)
1407 South America * Silt 9542 (1280)
. * Fe4151(3311)
144 Antarctica . CaC03 2960 (1388)
Position Description

15% have soil horizon
95% with FAO WRB
80% with land cover
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There is a publication on the global library

—

Authors: Those who contribute to GSSL established by Viscorra Rossel

Contents lists available at ScienceDirect

Earth-Science Reviews

journal homepage: www.elsevier.com/locate/earscirev

A global spectral library to characterize the world's soil

R.A. Viscarra Rossel **, T. Behrens®, E. Ben-Dor ¢, DJ. Brown ¢, ].A.M. Dematté ¢, K.D. Shepherd , Z. Shi &,
B. Stenberg ", A. Stevens ', V. Adamchuk’, H. Aichi ¥, B.G. Barthés ', H.M. Bartholomeus ™, AD. Bayer ",
M. Bernoux ', K. Béttcher P, L. Brodsky 9, CW. Du’, A. Chappell 3, Y. Fouad S, V. Genot ¢, C. Gomez Y,

S. Grunwald ¥, A. Gubler ¥, C. Guerrero *, C.B. Hedley ¥, M. Knadel %, H.J].M. Morras #, M. Nocita ",

L. Ramirez-Lopez *, P. Roudier”, E.M. Rufasto Campos , P. Sanborn ¢, V.M. Sellitto *, K.A. Sudduth %,
B.G. Rawlins 2", C. Walter *, LA. Winowiecki !, S.Y. Hong ¥ W. Ji &/

£ THE REMOTE SENSING
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Introduction to soll science



Introduction to soil science o —
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SOI' - The upper layer of the earth (= 0-2m) represent its loose surface material
which is dug, plowed and being a medium for plants to grow. (Thompson 1957)

f(P,C, T, O, t)

= = 3

Topsoil Zone

A > of
leaching
E Transition
Zone
B ’ of
accumulation

C

Essontials of Geodogy, 2nd Edition
MGURE S N Copyright (0 WW. Noston & Company




Introduction to soil science

—

THE REMOTE SENSING
LABORATORIES

W

Soil = f (P, C, T, O, 1)

Physical composition

Chemical composition

Texture

Clay content

Specific surface area

Organic matter

color

Mineralogy
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Soil is a complex system characterized by chemical and physical attributes that
provides an overview on the agricultural functions of the soil as a food producer

w01l Pro hile
(Pedon)

Soil is composed of

Clay
silt
sand
organic matter
carbonates

iron oxides

water
particle size
air

Cations

Anions

Flora

An area of land and th e soil protile (pedon) that characterizes it.

Fauna
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Spatial and vertical
changes
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» Introduction to soll science e —

Soil texture

Hydrometer

Sieve

Laser diffraction

Silt

100

100 \ 90\0 80\ 70\ so\ 50\ 40\ 30\ 20\ 10

-«—= Percent Sand
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Detector
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The importance of soils L —

Plants grow on soils.
Plants support animal life.
Plants and animals support human life.

World population is rapidly increasing,
with high food demand.

A large part of the world’s populatlon has
Inadequate nutrition.

Soll affects all the above
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The study of interaction between matter and radiated energy.

Spectroscopy Is used In physical and analytical

chemistry to detect, identify and quantify information

d

C

nout the atoms and molecules and determine the

nemical composition and physical properties of

various targets.
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Basic principles of spectroscopy -
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W

Electromagnetic spectrum

- Increasing energy
Increasing wavelength >
0.0001 nm 0.01 nm 10nm 1000 nm 0.01 cm I cm Im 100 m
L ! 1 I I I
Gamma rays X-rays Ulira- Infrared Radio waves
violet
Radar TV FM AM
Visible light

400 nm 500 nm 600 nm 700 nm
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100
90 —
80 —
70 [—
60 —
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20
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Solar
radiation

Radiation Intensity

Terrestrial
ML
\ | |

0.1 0.5 1.0 1.5 2.0 10 20 30 40 50
Wavelength in micrometers (um)
-« >« > Infrared >
Ultra- *yiiple | | | |
violet Short infrared Thermal infrared

- Shortwave > <—Long-wave— >
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Basic principles of spectroscopy

.

THE
LAB

REMOTE SENSI
ORATORIES

Radiation

Interaction with surface

Reflected Absorbed Emitted
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Reflectance

/S(PECLLLHQ
/ 40 A [nm} 700 400 A [nm] 700

THFFUWSE

400 Alom] 700 a0 3 [om) 700

400-2500 nm
0.4-2.5 pum




Basic principles of spectroscopy e —

Absorption

In the field of spectroscopy in the VNIR-SWIR ranges, two main processes

exist which cause an absorption of energy: between
electronic states that cause electrons to shift from basic molecular orbital into

exited orbital stage and which arise from molecular

vibrations (Wallace and Hobbs, 2006).
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Emittance
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An effective way to simplest the complexity of the soil system

0.4

Iron PNl e VN

Oxides \/

NS S
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L
= v / / N4 Clays /
é 0.2 / I HygrOSCOp|C Organlc
2 Oraanic \Water A A
0 Matter e
. / o alCIilc
0.05
0 I I I I
: 0.5 1.0 1.5 2.0 2.5
Wavelength (um) Chromophore = An attribute that interact

with the electromagnetic radiation
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The reflectance/emittance part of the electromagnetic
radiation that interacts with the soil across the VIS-NIR-

SWIR-TIR spectral regions (0.35-14um).

(nm) 72 ux

Point — one pixel
“ $ THE REMOTE SENSING %
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Mechanism
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adjusted From A. Goetz 1994

Simultaneous acquisition of images in many
registered spectrally- high resolution continuous
bands at selected (or all) spectral domains across

the UV-VIS-NIR-SWIR-MWIR-LWIR spectral region
(0.3-12um)
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O4en® Strong Link between Point and ———
\ Image Spectroscopy _
Geology
Image Vegetation Point
Spectroscopy Water Spectroscopy
Soll —m

/W\’\ ‘e
2085 L0
2085 L-1 =
2085 L-2
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Remote sensing

|
satellite

Provided by Viscorra Rossel

i
airborne Laboratory

vis i3'dOTi e 81 8 i 1*oT i Combination

Log 1/R

400 800 1200 1600 2000 2400

Wavelength /nm

Proximal sensing

|

|
static

1
mobile
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Quantitative Information on soil attributes can be Extracted from soil

spectral information

Dalal, R.C., and R.J. Henry. 1986. Simultaneous determination of moisture, organic carbon
and total nitrogen by near infrared reflectance spectroscopy. Soil Science Society of
America Journal 50:120-12

~
o

A
o
T

o
T

Sensor Measured Soil Moisture (%)
[t ]
()

O i
0 30 40
Laboratory Measured Gravimetric Soil Moisture (%)

Simple, rapid, inexpensive and
can be applied from large domains (laboratory, field, air and space)
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Examples of some of the soil attributes that can be extracted from
spectral library (1)

Soil atinibute

R.A. Fizscarra Rossel et al. / Geoderma 131 (2006) 39-75

Spectral Spectral Multivariate M| RMSE R®  Authors
region range (nm)  method™ Mot
Mg; g'kg VIS-NIR 400-2500 modified PLSR 315 0.90 Cozzolino and Moron (2003)
Mg (exch.); cmol(+Vkg VIS-NIR 350-2500 MARS 493|246 11 0.81 Shepherd and Walsh (2002)
Mg (exch.); mg/kg VIS-NIR 400-2498 PCR (9) 30)119 128 068 Chang et al. (2001)
Mg; mmol(+)/kg UV-VIS-NIR  250-2500 PCR 12140 0.63 Islam et al. (2003)
Mn (DTPA); mg'kg MIR 2500-25,000 PLSR 183 0.57 Janik et al. (1998)
Mn (exch.); cmolkg MIR 2500-25,000 PLSR 183 0.66 Janik et al. (1998)
Mn (Mehlich IIl); mgkg  VIS-NIR 400-2498 PCR(12) 30/119 564  0.70 Chang et al. (2001)
oC; % MIR 2500-20,000 PLSR 092 Janik and Skjemstad (1995)
oC; % MIR 2500-25,000 PLSR 188 093 Janik et al. (1998)
0C; gikg MIR 2500-25,000 PLSR (17) 177| 60 094 McCarty et al. (2002)
OC; (acidified soil) glkg MIR 2500-25,000 PLSR (19) 177| 60 0.97 McCarty et al. (2002)
0C; % NIR 1100-2500 MLR (1744, 72|48 0.93 Dalal and Henry (1986)
1870, 2052)
0C; % NIR 1100-2500 RBFN 140| 60 032 096 Fidéncio et al. (2002)
OC; % NIR 700-2500 PCR 12140 0.68 Islam et al (2003)
0C; glkg NIR 1100-2498  PLSR (18) 177|60 0.82 McCarty et al. (2002)
0C; mgkg NIR 1100-2300 PLSR (8) 180 x-val 094 Reeves and McCarty (2001)
OC (acidified soil); gkg  NIR 1100-2498  PLSR (17) 177| 60 0.80 McCarty et al. (2002)
0oC; gkg VIS-NIR 400-2498  PLSR (6) 76|32 062 089 Chang and Laird (2002)
OC; gikg VIS-NIR 350-2500 MARS 449|225 031 080 Shepherd and Walsh (2002)
OC; dag/kg VIS-NIR 350-1050 PLSR (5) 43|25 036 Viscarra Rossel et al. (2003)
oC; % UV-VIS-NIR  250-2500 PCR 12140 0.76 Islam et al. (2003)
OM; % MIR 2500-25,000 PLSR (4) 31 x-val 072 098 Masserschmidt et al. (1999)
OM; % NIR 1000-2500 MRA (30 bands) 39|52 0.55 Ben-Dor and Banin (1995)
OM; % VIS-NIR 400-1100 NN 41 0.86 Daniel et al. (2003)
OM; % VIS-NIR 400-2400 SMLR (606, 15|10 0.65 Shibusawa et al. (2001)
1311, 1238)
P (avail.); mg'kg MIR 2500-25,000 PLSR 186 0.07 Janik et al. (1998)
P (avail); mg/kg VIS-NIR 400-1100 NN 41 0.81 Daniel et al. (2003)
pH MIR 2500-20,000 PLSR 0.72 Janik and Skjemstad (1995)
pH NIR 1100-2300 PLSR (8) 180 x-val 074 Reeves and McCarty (2001)
pH NIR 1100-2498  PLSR (1) 120/ 59 0.73 Reeves et al. (1999)
pH VIS-NIR 350-2500 MARS 505|253 043 0.70 Shepherd and Walsh (2002)
pHo MIR 2500-25,000 PLSR 183 0.67 Janik et al. (1998)
- THE REMOTE SENSING %

—
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Examples of some of the soil attributes that can be extracted from
spectral library (2)
Soil attribute Spectral Spedral  Multivariste  ngw| RMSE R®  Authors
region range (om)  method Mot
oc; % MIR 2500-20,000 PLSR 0.92 Janik and Skjemstad (1995)
oc; % MIR 2500-25000 PLSR 188 0.93 Janik et al. (1998)
OC; gkg MIR 2500-25,000 PLSR (17) 177| 60 0.94 McCarty et al. (2002)
OC; (acidified soil) gkg ~ MIR 2500-25,000 PLSR (19) 177|600 0.97 McCarty et al. (2002)
oc; % NIR 1100-2500 MLR (1744, 72|48 0.93 Dalal and Henry (1986)
1870, 2052)
0cC; % NIR 1100-2500 RBFN 140| 60 032 096 Fidéncio et al. (2002)
0cC; % NIR 700-2500 PCR 121 |40 0.68 Tslam et al. (2003)
OC; gkg NIR 1100-2498  PLSR (18) 177|600 0.82 McCarty et al. (2002)
0OC; mgkg NIR 1100-2300  PLSR (8) 180 x-val 0.94 Reeves and McCarty (2001)
OC (acidified soil); gkg  NIR 1100-2498  PLSR (17) 177| 60 0.80 McCarty et al. (2002)
OC; gkg VIS-NIR 400-2498  PLSR (6) 76|32 062 089 Chang and Laird (2002)
0OC; ghkg VIS-NIR 350-2500 MARS 449|225 031 0.80 Shepherd and Walsh (2002)
OC; dag/kg VIS-NIR 350-1050 PLSR (5) 43|25 036 Viscarra Rossel et al. (2003)
oc; % UV-VIS-NIR.  250-2500 PCR 121]40 0.76 Islam et al. (2003)
OM; % MIR 2500-25,000 PLSR (4) 31 xval 072 098 Masserschmidt et al. (1999)
OM; % NIR 1000-2500 MRA (30 bands) 39|52 0.55 Ben-Dor and Banin (1995)
OM; % VIS-NIR 400-1100 NN 41 0.86 Daniel et al. (2003)
OM; % VIS-NIR 400-2400 SMLR (606, 1510 0.65 Shibusawa et al. (2001)
1311, 1238)
P (avail.); mg'kg MIR 2500-25,000 PLSR 186 0.07 Janik et al. (1998)
P (avail.); mg'kg VIS-NIR 400-1100 NN 41 0.81 Daniel et al. (2003)
pH MIR 2500-20,000 PLSR 0.72 Janik and Skjemstad (1995)
pH NIR 1100-2300  PLSR (8) 180 x-val 0.74 Reeves and McCarty (2001)
pH NIR 1100-2498  PLSR (11) 120| 59 0.73 Reeves et al. (1999)
pH VIS-NIR 350-2500 MARS 505|253 043 0.70 Shepherd and Walsh (2002)
pHe MIR 2500-25,000 PLSR 183 0.67 Janik et al. (1998)

R.A. Viscarra Rossel ef al. / Geoderma 131 (2006) 59-75

—
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Merging Soil Spectral Library : The problem
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Most of the SSLs today are generated in the laboratory domains

e Users are focused on their own protocols

(measurement methods and instrumentation)
* Protocol may affects the final spectrum......

e Quantitative models are sensitive to these
effects (small spectral changes) .....

- THE REMOTE SENSING
LABORATORIES



The Problems - Example 1: Spectral Domain
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Reflectance
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One soil: Three different protocols
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Wavelength (nm)



The problem - 2: Analytical Domain
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100 samples (60 cal, 40 val) — three protocols : Quantitative analysis

Instrument  Internal CaCOg, Clay Content Organic Matter Fe203
/‘Operator  standard | RMSEP RMSEP RMSEP RMSEP

TAU Original | 13.24 5.4 1.54 4316
SAHAF  Original | 13.33 8.2 1.50 5169
BOKER __ Original | 17.44 8.9 1.79 4687

45




Soil Laboratory Spectroscopy: Problems
(SVStemiC = Non SyStematiC) D e i

two sources are responsible for that:

Systematic
Non systematic effects

Systematic Effects: e.g. Spectrometer Calibration, Geometry between measurement sets,
Bulb Response

Non Systematic Effects: e.g. Spectrometer instability, Geometry within a measurement set
Bulb instability, atmosphere attenuations, user experience

Correcting for Non Systematic Effect - Using an agreed protocol
Correcting for the Systematic Effects — Using an Internal Soil Standard Method



Protocol (Non systematic effects) e o
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A simple protocol has
established for new users
Since 2014

Reflectance

Measurement of Soils
in the Laboratory: |
Standards and |

Contents lists available at Scien ceDirect

Geoderma

journal homepage: www .elsavier.cam/locate/gaoderma

P r O t O C O 1 S Reflectance measurements of soils in the laboratory: Standards @mum

and protocols
Eyal Ben Dor **, Cindy Ong", lan C. Lau®

Ben Dor E*, Ong O. and L. Lau B

" CSIRD, Perth, Western Australia, Australia

Thiz document provides 3 detail 3 ARTICLE INFO ABSTRACT
routines on how to measure zoil sctan h Fotete history: For the past 20 years, soll reflectance measurement in the labaratory has been a comman and extensively used
Received 4 Gcober 2014
£ : procedure, Based on soil SPECETOSCOpY, 4 PROXY STTategy using a chemometrics approach has been developed
laboratory sy y and - Receivedin revised form 3 Jamuary 2015 for soils, along with of soil specrral libraries . Surprisingly however, there are
£ < 52 O r*:';:”“"““v"“ no agreed- or protocols for in the laboratory and field. Conse
e R N N receive high performance snd rep ¥ L allable omline oo quently, almast every user reconstructs his or ber own . experience,
e Remote Sensing : e and infrastructure. This yields significant problems for nd sharing a
cocument presents two standards and tWwo p
Sail spectral variations can be encountered from one protocol o the next. This further prevents the generation of a
atory, Department of s enbuacr vk e 2 st el o s i arrhive

The protocois are for a contact prabe ana E
geometry assemblies and the two stancards
zand cunes from Western Austrafe Rt 8l
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Internal Soil Standard (ISS) purse: to align with

systematic effects of protocols I

Adopted from the wet chemistry analytical practices

Internal standard

From Wikipedia, the free encyclopedia

An internal standard in analytical chemistry is a chemical substance that is added in a constant amount to samples, the blank and
calibration standards in a chemical analysis. This substance can then be used for calibration by plotting the ratio of the analyte signal to
the internal standard signal as a function of the analyte concentration of the standards. This is done to correct for the loss of analyte during
sample preparation or sample inlet. The internal standard is a compound that matches as closely. but not completely, the chemical
species of interest in the samples, as the effects of sample preparation should, relative to the amount of each species, be the same for the
signal from the internal standard as for the signal(s) from the species of interest in the ideal case. Adding known quantities of analyte(s) of
interest is a distinct technique called standard addition, which is pedformed to correct for matrix effects.

Fr(i) = (counts/gram)gandara/(cOunts/gram)eomponent i

(1)
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Internal Soil Standards (1SS) characteristics

—

General:

A simple and low cost material that can be shipped easily worldwide (no
valuable cost, light in weight

Spectral:

A material that will hold stable absorption features, across the VIS-NIR-SWIR
region and will be an inertial material

Radiometrical:

A material that will hold the soil particle size (<2mm) and characterizes with
no absorption features
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Searching for an ideal standard took almost 4 years
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Spectral Normalization Process

Spectral standardization

CF,=1—((Sp,—Mp;)/ Sp))

Rc, =Ro,;x CF,

Sp, is the reflectance of the Slave reference (your measurement of the ISS)

Mp, is the reflectance of the Master reference (standard 1SS measured by a certified agreed-
lab)

Rc, is the corrected sample reflectance (to the internal standard conditions, standard)
Ro, is the original sample reflectance (sample)
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Results - Standardization = ===

Reflectance factor

Soil B spectrum comparison before and after Sand

standardization
Original Sand corrected
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Sets Up (development)
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CSIRO 0 - Brand New HALON Plate as a WR with, ASD-2, contact probe (CP),
User-1, Perth, Protocol A(0) - MASTER



andard for Systemic Effects T

Lucky Bay Wiely Bay

Soil Mineralogy

Performance of Three Identical Spectrometers
in Retrieving Soil Reflectance under
Laboratory Conditions

g difcrer imrements o
el sumplcs shere vry wezk

A rangeof ectron: asd mechanicl soise Fctors can afce sl specer
cren whea epeating 1 speci amples measunmens we

Agustin Pimstein®
Facuhtad de Agronomia e Ingenieria
Forestal of the Pontificia Universidad
Catolica de Chile.

e same spectmoment |

aties s wavekngth kxsnon, pesk shup

froposc s eaadandizon mebod, 12 wi wples sad sent svserial e Innemal wandedh (und go

hthykese) were andysed Thes pop sred wib thee skemicd pectiumctens

Gila Notesco
Eyal Ben-Dor

Dep. of Geography and Human

nese protocol,aal then by ffcrent opeeon waeh difcrent povencels. Sgnifean

hurges
>S90 vhen
was spplied. Sand ws e 10 be the ideal isecend s e

Environment, :
TebAviv Univ cte,cven whee difireat messer g jeoeox s were escd
P.O.B. 39040, snjecncanent i the pred ton of ol propers
Ramat Aviv 69973, Iseael. e, corcdding th the u of
1l mesuremenin As the mesmsring fctoes decibed i thi rcanch she
spectmmogy mesurement de popoad

cirg unod. This s crucisl 1o cbliag speveal Setween déicront spevsnuncten ue. sore rgurtinthy

ic modchs and u

osing bt che e et ke,

x Inc; CR. continuwm removal; NIRS, near infrared
analysis; PLS, purtial least spasres: RGH, red greeen-blue cobor model: KMSEP. roce sean square erroe
sion: SAM, speceral us TAU Tek Aviy Univers

Abbrevistione: ASD. Analytical Spectral Dev

any reflectance spectroscopy applications have been developed for sodls in the

last 20 yr (Malley ct al. 2004), Today, reflectance in the VIS-NIR-SWIR re
gion is considered to be 3 solid and manure technique foe qualitative and quantitative
analyses of soil material (Ben-Dor et al., 2008b). Soil spectroscopy has advanced the
disciplin of soil science by providing a rapid and accurate methodology for quantita
tive analyses that bypasses the traditional “wer” iboratory analyses. Whereas most of
the work in cvabuating soil informatson from reflectance spectroscopy has been per-

formed under controlled iboratory conditions, fickd appli are now rapidly gain

ingan important place in soil spectroscopy (Ben-Dor et al, 2009; Cecillon et al, 2009).
Accondingly, portable spectrometers are being devdoped and wtilized workwide for
many natural resource applications, such as soil, rock. vegetation. and water studies.
In addition. a wide range of soil spectral measurcments are being gathered around the
globe with the intention of building a universal soil spectral library {Viscarra Rossel,
2009). However, this kind of initiative, or even the routine analyses of spectral data
collected in one specific hboratory, are limited by the differences that are usually ob

tained when different spectrometers and protocols are used (Milton ct al. 2009; Price,

1994). Spectral p may vary among different types of sp oreven

among models from the same manufacturer, being therefore important to characterize

This armiche has supplemental matesial avadable online.

Sofl Sci, Soc. A

Mord R, Madison W1 33711 USA
1 may b regmoduced or wacamitie in any form ce by

ved. No part of this p

ctronic ce mechanical. s ludieg phosacoprying, recorting, or am inamaton soeage
rmssion for rinting and for

SSSAJ: Volume 75: Number 2 » March-April 2011 1



THE REMOTE SENSING
LABORATORIES

s

Reflectance

0.7

0.6

0.5

0.4

0.3

0.2

0.1

.
e
cne®®

Original

SOIL 1 (CSIRO -2)

oo
.....
oo
o

0o
o
.
o
o
.

eoce
0e®
.....
o
o
.

Internal Sand
Corrected

850

1350

Wavelength (um)

1850

2350



p
p

*

ASDS = Average Sum of Deviation Square
(Ben-Dor et al., 2004)

2500 )
20(1_,0/1 [ p*, )
ASDS = 4=
2151

: sample reflectance
: reference reflectance

ASDS = 0 = good match
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Utilization of the Internal Soil Standard Method for the Brazilian
Soil Spectral Library: Spectral Performance and Proximate

analysis
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Establishing the Brazilian National Soil
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Agricultural Soil Mapping based on Local SSL and HSR technology
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Soil Spectral Library : The Commercial Value (1) = e st
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[J) Contact B EN Choose regional office

SOllcares @ Products Solutions Research Our story  Library

9 SoilCares Soil
Scanner .- #

pH, N, P, K, EC, temperature and organic matt
your phone in 30 seconds.

P Play the video!

very attordable.

.
How it works
Just one button O——— ; Soil data and recommendations on your phone in 30 seconds.

| 1 I 2;% 3 4%
. S

Scan Connect Analyse Act

Scan the soil Upload the data via the app Let the database do the magic Receive your report

http://www.soilcares.com/en/products/scanner/

Near infrared
and EC sensor
combined
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Innovative technology analyzes soil in just 30 seconds

i Projects analyses of soil
samples with out the

need for “wet”
laboratories

Photo: André Marcelo de Souza Embrapa Solos (RJ), in partnership with the private
sector, has developed a technology package for the soil
analysis that will revolutionize the market in Brazil.
Called SpecSolo, it has the advantage of analyzing soil
samples non-destructively, quickly and economically.
Tens of fertility parameters (soil organic carbon, pH,
calcium, magnesium, phosphorus, potassium, among
others) and physical soil (clay, silt, sand) can be
analyzed simultaneously in 30 seconds. Conventional
analysis takes days to present the same parameters.

Diagnosis of physical, chemical and
microbiological areas of soils with
"The SpecSolo is based on the use of techniques of horticultural production
vibrational spectroscopy and artificial intelligence,"

explains André Marcelo de Souza, from Embrapa Solos

researcher and responsible for technology. Souza News

explains that the technology makes use of accurate and efficient algorithms. "These algorithms", explains the
scientist, "will use a robust database with over one million representative soil samples from Brazil." Souza says
that the samples and related analytical data were obtained from one of the largest laboratories in the world soil
analysis, the Brazilian Institute of Analysis (IBRA), development of project partner and co-responsible for
technology.

View more

soil analysis goes to the producer

Videos

last five decade
or soil analysi

"The SpecSolo analyt lution Is one of the greatest Innovations In the analysis of th
in Brazil, resuming 4 on of Embrapa to propose and implen sw methodolog
the Brazillan agricultural scenario.” relterates the general head of Embrapa Solos Danlel Vidal Pérez. Both the
instrument and technology have the seal of Embrapa. Therefore, the SpecSolo will be an official method

: ! O 1 ( recommended by the Company for soll analysis In Brazil ¥ %
How It works L 5 %

Tecnelogia inovadora analisa solos em apenas 30 segundos

For the duo of directors of IBRA Armando Saretta Parducci Parducci and Thiago Camargo, the partnership
between Embrapa Solls and IBRA enabled the development of technology. "We are the pioneers In Brazil to
build a robust database with such a significant number of samples of Brazilian soll, essential for the
development and success of technology,” says Armando Parduccl

In addition to the large ux\(r\baac the technology package SpecSolo has a unique hosted software In the cloud
dedicated to soll analysis, called SpecSolo-Scan.

The equipment has an automatic sampler that allows simultaneous analysis of 40 soil samples and autonomy to
work alone for 20 minutes. After that time, the analytical results are generated automatically, remotely
accessing the database. The results can be released according to the service purchased by the customer and
may be In the form of analytical results of each soll parameter or Interpretation of bands of soil fertility.

The project alao ncludes an expart aystem fo ganeraie fertilizer recommendations and liming, coording to the
able In the country. S lo-Sean is the first ne

y (VIsNIR) the world to present an autosampler and an integrated system wun database
mny m«m..- ed 1o soil analys|
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The Concept of Soil Mapping using LSSL and Drones in real time mode
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Hyperspectral Imaging Sensor
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Reflectance spectroscopy (RS) of soils is an important property for Food
Security issues world wide.

Spectral libraries are generated under regional, national, continental and
global scales.

The GSSL initiative paves the road to accumulate libraries from all scales and
resources global wide.

SSLs from North Africa, Mediterranean and Balkan countries should be
extend in order to be a data base for modern precision agriculture activities.

Standard and protocols are existing and should used for the GEO-CRADLE’s
Reginal SSL PILOT.
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